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Abstract

Neutrino astronomy is a highly promising field in high-energy particle and as-
trophysics, requiring the use of cubic-kilometer scale detectors to capture the
light signatures of rare neutrino interactions. Currently, the future Pacific Ocean
Neutrino Experiment (P-ONE) is being developed to transform the depths of the
ocean abyss off the west coast of Vancouver Island into a neutrino observatory.
Despite being positioned at depths exceeding 1.5 km, the P-ONE remains inhab-
ited by various forms of life, including the captivating phenomenon of biolumi-
nescence. Bioluminescence refers to the emission of light by living organisms
and presents a significant challenge as a light background for neutrino tele-
scopes. However, deep-sea neutrino telescopes also offer a unique opportunity
for biologists to study the diverse life thriving in this vast and largely unexplored
habitat, which encompasses the largest expanse on Earth. To assess the feasibil-
ity of the future P-ONE site, pathfinder missions such as Strings for Absorption
Length in Water (STRAW) and STRAW-b (Strings for Absorption Length in Water
b) have been deployed. This thesis focuses on the development of the data acqui-
sition system for STRAW-b and introduces the camera system employed, pro-
viding insights into the camera optics. Additionally, an innovative image recog-
nition algorithm aided by machine learning is presented, enabling the detection
and characterization of bioluminescent events. This advanced image recognition
capability facilitates a comprehensive analysis of bioluminescence, including its
correlation with water currents and the quantification of bioluminescent organ-
ism concentrations. Notably, this thesis represents the first measurement of the
spectral population of bioluminescent organisms in the deep sea.
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Zusammenfassung

Neutrinoastronomie ist ein vielversprechendes Forschungsfeld in der Hochener-
gie- und Astrophysik, das den Einsatz von Detektoren mit einem Volumen von ei-
nem Kubikkilometer und mehr erfordert, um die Lichtsignale seltener Neutrino-
Wechselwirkungen zu erfassen. Derzeit wird das künftige Pacific Ocean Neu-
trino Experiment (P-ONE)1 entwickelt, um die Tiefsee vor der Westküste von
Vancouver in ein Neutrinoobservatorium zu verwandeln. Trotz der Tiefe von
über 1.5 km beherbergt P-ONE verschiedene Formen von Leben, einschließlich
des faszinierenden Phänomens der Biolumineszenz. Biolumineszenz bezieht sich
auf die Lichtemission lebender Organismen und stellt eine bedeutende Her-
ausforderung als Hintergrund für Neutrinoteleskope dar. Neutrinoteleskope für
die Tiefsee bieten jedoch auch eine einzigartige Gelegenheit für Biologen Bio-
lumineszenz, in diesem weltweit größten Lebensraum, der weitgehend uner-
forschten ist, zu untersuchen. Um die Machbarkeit von P-ONE am geplanten
Standort zu bewerten, wurden zwei Erkundungsmissionen Strings for Absorp-
tion Length in Water (STRAW)2 und STRAW-b (Strings for Absorption Length
in Water b)2 durchgeführt. Diese Arbeit konzentriert sich auf das entwickelte
DAQ-Systems3 und für STRAW-b, stellt das eingesetzte Kamerasystem vor und
gibt Einblicke in die Kameraoptik. Darüber hinaus wird ein innovativer Bilder-
kennungsalgorithmus mit Hilfe von maschinellem Lernen vorgestellt, der die Er-
kennung und Charakterisierung von biolumineszenten Ereignissen ermöglicht.
Diese Bilderkennung erleichtert eine umfassende Analyse der Biolumineszenz,
einschließlich ihrer Korrelation mit den Wasserströmungen und der Quantifizie-
rung der Konzentration biolumineszenter Organismen. Besonders bemerkens-
wert ist, dass diese Arbeit die erste Messung der spektralen Population biolumi-
neszenter Organismen in der Tiefsee darstellt. Diese Bilderkennung ermöglicht
eine umfassende Analyse der Biolumineszenz, einschließlich ihrer Korrelation
mit Wasserströmungen und der Quantifizierung der Konzentrationen biolumi-
neszenter Organismen. Des Weiteren stellt diese Arbeit die erste Messung der
spektralen Population biolumineszenter Organismen in der Tiefsee dar.

1P-ONE (engl.: Pacific Ocean Neutrino Experiment) Neutrino-Experiment im Pazifischen
Ozean

2STRAW (engl.: Strings for Absorption Length in Water): Vertikale Leinen für die Absorpti-
onslänge im Wasser

3DAQ (engl.: data acquisition): Datenerfassung
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Contribution

The following presents a summary of the author’s contributions within the scope
of this thesis.

Section 2.1 and 2.2: part of the development team in both P-ONE pathfinder mis-
sions: STRAW and STRAW-b (Strings for Absorption Length in Water b).

Section 2.2.1: development of the PMT-Spectrometer modules, including sim-
ulation, optimization, design, production, testing, and calibration. Moreover,
project lead of the art integrations in STRAW-b called UNDERCURRENTS [1]
in collaboration with Fine-arts Academy in Munich and the Sonderforschungs-
bereich 42 (SFB42) [2].

Section 2.2.2, 2.2.3, and 2.2.4: development of the master control soft-
ware (MCTL) that operates nine of ten4 STRAW-b instruments from the
low-level module operations towards the data acquisition (DAQ) system which
is fully integrated into the Oceans 2.0 platform5.

Section 2.2.5: development of a user-friendly software package to simplify data
handling, processing, and analyzing the data of STRAW-b.

Chapter 3: integration a camera system in two STRAW-b modules, including
the optimization of the control software to guarantee a high performance which
resulted in an uptime of over 95 % since the commissioning.

Chapter 4: part of the development team of the flasher system for the opti-
cal modules in STRAW-b. Responsible for software integration, including safety
mechanisms to prevent excessive exposure to sensitive PMTs.

Chapter 5: derivation of the optical projection of the camera system, which in-
cludes the lens optics and the distortion of the spherical pressure housing.

Chapter 6: leading the development and optimization of an machine learn-
ing (ML) aided bioluminescence detection algorithm. This algorithm exhibits
exceptional performance by accurately identifying bioluminescence signals that

4The Wavelength-shifting Optical Module (WOM) is operated individually.
5Oceans 2.0 a publicly available database that is part of the Ocean Networks Canada (ONC)

infrastructure
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extend across a minimum of five pixels within the images captured by the cam-
era.

Chapter 7: developed the analysis software that utilizes recorded images to track
the relative movement of moorings between two modules and quantify the con-
tamination caused by biofouling and sedimentation based on the reduction in
brightness of bioluminescence emissions. A literature study was also conducted
to compile potential countermeasures for addressing biofouling in P-ONE.

Chapter 8: development of the simulation and analysis framework that quan-
tifies significant aspects of bioluminescence observed in the recorded images.
Derivation of the relationship between the bioluminescence rate at the detector,
the water flow speed, and the concentration of bioluminescent organisms.
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1 Introduction

The vast expanse of the Universe remains an enigma that has fascinated hu-
manity for centuries. At the high-energy end of this mysterious domain, the
cosmos is awash with cosmic radiation of various types. These particles include
photons in the form of gamma rays, neutrinos, and charged particles, which con-
tinuously bombard the Earth’s atmosphere without leaving a clear indication of
their origins or the mechanisms that produce them. Cosmic rays have energies
of up to 1020 eV, making them more than a million times more energetic than
those generated in human-made particle accelerators such as the Large Hadron
Collider (LHC) at CERN which reaches a collision energy of 13.6 TeV after the
latest upgrade in April 2022 [3]. Despite intensive research, fundamental ques-
tions regarding high-energy cosmic radiation still need to be answered, such as
its origin, production mechanisms, and role in cosmic evolution.

Neutrinos, unlike photons, only interact weakly, making them closely linked to
the acceleration and interaction of cosmic rays in astrophysical environments.
Therefore, neutrino astronomy is one of the most promising fields for high-
energy particle and astrophysics. However, the low cross-section of neutrinos
requires enormous detectors, and even with the cubic-kilometer volume of Ice-
Cube, the number of astrophysical neutrinos detected remains relatively low.
2013 the first high-energy astrophysical neutrinos were detected [4, 5]. How-
ever, it took another four years to observe the first compelling neutrino source
candidate, a flaring gamma-ray blazar1 called TXS 0506+056 [6–8]. As recently
presented by the IceCube collaboration, the first evidence of high energy neu-

1Blazars are a type of elliptical galaxy that is characterized by a supermassive black hole
at their center which produces a high-energy jet of particles that points in the direction of the
Earth.
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1 Introduction

trino emission from the nearby galaxy NGC1068 has been shown, supporting
the case for broad astronomy based on neutrinos [9].

These astrophysical observations provide strong motivation for the imple-
mentation of additional neutrino telescopes on a cubic-kilometer scale, such
as KM3NeT (Cubic Kilometer Neutrino Telescope) [10] and P-ONE (Pacific
Ocean Neutrino Experiment) [11]. Despite being deployed in the ocean abyss
at depths below 1.5 km kilometers, neutrino telescopes such as KM3NeT and
P-ONE are still in the presence of life in the abyss. One phenomenon of the
deep sea is bioluminescence, which refers to the emission of light by living
organisms such as bacteria, plankton, and fish. While bioluminescence is a
crucial aspect of oceanography, it poses a significant background for neutrino
telescopes which requires a deep understanding of the physical and biological
processes that contribute to bioluminescence, as well as the use of advanced
modeling techniques to simulate and account for its effects. Despite this
challenge, bioluminescence in neutrino telescopes offers a unique opportunity
for biologists to study life in the deep sea, which is by far the most extensive
habitat on Earth and still remains largely unexplored.

Two pathfinder missions, STRAW and STRAW-b (Strings for Absorption Length
in Water b), have been deployed at the future site of P-ONE to investigate envi-
ronmental parameters and feasibility for a cubic-kilometer scale neutrino detec-
tor [12, 13]. While STRAW measured the optical properties of water in Cascadia
Basin [13], STRAW-b utilized cameras and spectrometers to investigate biolu-
minescence properties in the deep sea.

The primary focus of this thesis centers around the key elements of the STRAW-b
pathfinder. It delves into the low-level module operations, the DAQ system, and
the hardware components. A significant emphasis is placed on analyzing bi-
oluminescence using the cameras installed in select modules of STRAW-b. A
novel technique utilizing machine learning has been developed for biolumines-
cence detection. This detection technique enables the analysis of biolumines-
cence from various perspectives. Notably, this thesis presents, for the first time,
the measurement of the spectral population of bioluminescent organisms in the
deep sea. The obtained results support the feasibility of a long-term neutrino

2



telescope based at the Cascadia Basin.

The thesis is structured as follows:

In Chapter 2, a concise introduction to the P-ONE detector is given, which
covers its two pathfinder missions, namely STRAW and STRAW-b, that have
been accomplished successfully. The chapter puts special emphasis on the data
pipeline developed for STRAW-b, which involves a reliable DAQ system and a
user-friendly interface that simplifies the process of data analysis.

In Chapter 3, a summary of the cameras incorporated in STRAW-b is given, en-
compassing their hardware elements, the circumstances in which images are
recorded, and a synopsis of the measurement’s overall performance. It is note-
worthy that these cameras have exhibited an uptime of more than 99 % since
December 2021, indicating their high degree of operational reliability.

In Chapter 4, the LED flasher system used in conjunction with STRAW-b’s cam-
eras is introduced. This includes a detailed discussion of the hardware compo-
nents involved, the DAQ system used to collect data from the flasher, and the
conditions that trigger flashes.

In Chapter 5, the camera optics is discussed, wherein an analytical model is pre-
sented that considers the lens and distortion of the pressure housing’s glass. This
model serves as a foundation for interpreting the images discussed in chapters
7 and 8, where it establishes a metric space for specific measurements.

In Chapter 6, the method for image processing to extract bioluminescence emis-
sions from the STRAW-b cameras is outlined. This process combines determinis-
tic cluster detection with novel machine-learning classification techniques, en-
abling automated adaptation to intrinsic camera differences. Furthermore, with
the ability to achieve a high bioluminescence detection probability with as few
as 5 pixels in the image, this approach is highly effective for bioluminescence
analysis.

In Chapter 7, the focus is on characterizing the movement of the STRAW-b moor-
ing system and the effects of biofouling and sedimentation. These two crucial as-
pects affecting the camera-based analysis will be relevant for the future P-ONE

3



1 Introduction

telescope. Furthermore, the chapter presents practical strategies for mitigating
and detecting bio-fouling in future installations.

In Chapter 8, the bioluminescence phenomenon is explored through the use of
images captured by the cameras in STRAW-b. The chapter delves into various as-
pects of bioluminescence, including the periodic variations in the baseline emis-
sion rates, the spatial distribution of the bioluminescent features in the images,
the spectral population of the organisms emitting the light, and the processes
that lead to bioluminescence and how they relate to the current speed and con-
centration of the bioluminescent organisms.

The appendix of this thesis contains supplementary material to aid in under-
standing the methodology and results presented in the main text. Specifically,
detailed documentation of the DAQ file structure of STRAW-b is provided in
Appendix A. Furthermore, Appendix B summarizes and discusses the sensor
and module malfunctions encountered during the STRAW-b mission. Additional
information on cluster detection and classification is available in Appendix C.
Moreover, the bioluminescence catalog, which summarizes the emission spec-
tra of bioluminescent organisms, is found in Appendix D. Finally, detailed in-
formation on water flow simulation and measurements can be found in Ap-
pendix E.

4



2 Pacific Ocean Neutrino Experiment and
its Pathfinder Missions

The Pacific Ocean Neutrino Experiment (P-ONE) is a joint initiative among
universities and research institutions in the USA, Canada, UK, Poland, and
Germany to construct a multi-cubic-kilometer neutrino telescope in the Pacific
Ocean that will provide new insights into the Universe’s highest energies
[11, 14]. The project began in 2017 and has since developed into an inter-
national collaboration. The primary partner of P-ONE is Ocean Networks
Canada (ONC), an initiative from the University of Victoria that operates
the most extensive oceanographic infrastructure globally, with the NEPTUNE

400 m

0 m

-1660 m

-2660 m

80 m

Figure 2.1: The P-ONE detector is designed as a modular structure consisting of seven
clusters, as shown in the left image, with a visualization of a track event. A single clus-
ter, as depicted on the right, comprises ten strings, each equipped with twenty optical
modules.
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2 Pacific Ocean Neutrino Experiment and its Pathfinder Missions

Figure 2.2: Map of ONC’s NEPTUNE Observatory. P-ONE will be located at the Cas-
cadia Basin node, where the pathfinder projects STRAW and STRAW-b are currently in
operation. Image courtesy of ONC.

[15] ocean observatory providing power and data connections to various deep
ocean sites off the west coast of Vancouver Island. NEPTUNE is based on
an approximately 800 km long cable for power transmission and fiber optic
communication and plugs devices in the deep sea directly into the Internet [11,
14–16]. A map of the cable and the ocean sites are depicted in Figure 2.2.

P-ONE has been primarily designed to detect astrophysical neutrinos at multi-
TeV energies, with a particular emphasis on horizontal tracks. Its modular struc-
ture enables easy scalability and allows for the installation of the array in vary-
ing sizes and stages. As illustrated in Figure 2.1, the detector is structured into
individual clusters. Each P-ONE cluster comprises ten strings with 20 optical
modules [11, 14].

The P-ONE neutrino observatory has been selected to be situated in the Casca-
dia Basin, located off the coast of British Columbia, Canada, as shown in Fig-
ure 2.2. This site has been under observation since 2018 by two pathfinder exper-
iments, namely Strings for Absorption Length in Water (STRAW) (Section 2.1)

6
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Figure 2.3: Global map of existing and under-construction neutrino telescopes and their
corresponding horizontal coverage, where the detectors have the highest sensitivity for
high-energy neutrinos and are not affected by Earth absorption [17]. Plot courtesy of
Lisa Schumacher.

and STRAW-b (Section 2.2). The pathfinder missions have provided critical in-
sights into the optical and environmental suitability of the P-ONE large-scale
neutrino telescope. Following up on the two pathfinder experiences, the design
of P-ONE started. The blueprint of the P-ONE mooring line is currently under
design, with a deployment scheduled in 2024 [11].

The P-ONE prototype will include P-ONE digital optical modules to measure
the emerging Cherenkov radiation by muon and neutrino-induced processes, as
well as P-ONE calibration devices to provide in-situ calibration of the detector.
The prototype line will also feature external geometry calibration units to verify
the envisioned calibration principles [11].

The P-ONE project capitalizes on the strengths of the Canadian oceanographic
community, and the successful deployment of the STRAW and STRAW-b (Strings
for Absorption Length in Water b) projects have demonstrated the potential of
the Cascadia Basin site for large-scale neutrino telescope experiments. By ex-
panding our observable window of the Universe to the highest energies, the

7



2 Pacific Ocean Neutrino Experiment and its Pathfinder Missions

P-ONE neutrino observatory is expected to significantly contribute to our un-
derstanding of astrophysical phenomena, alongside other neutrino telescopes
such as ANTARES [18], KM3NeT [10], GVD [19], and IceCube [20]. Combin-
ing these observatories into a single distributed planetary instrument called the
high-energy Planetary Neutrino Monitoring System (PLE𝜈M) would enhance
detection probability by up to two orders of magnitude compared to IceCube’s
current capabilities, covering almost the entire sky as depicted in Figure 2.3
[17].

2.1 First Pathfinder: Strings for Absorption Length in

Water (STRAW)

The Strings for Absorption Length in Water (STRAW) is the first pathfinder mis-
sion towards P-ONE. As the name indicates, STRAW primary purpose is to as-
sess the attenuation length of water in the wavelength range between 350 nm
and 600 nm and the optical background at the site where the P-ONE will be
constructed. The optical background is a combination of the bioluminescence
of deep-sea living organisms and the 40K dissolved in the salty water. Besides,
gaining experience in the challenges of deep-sea experiments is another purpose
of the STRAW mission [12, 13].

STRAW has two 146m long mooring lines spaced 37m apart horizontally where
each mooring hosts four modules as shown in Figure 2.4. From the overall eight
modules on the two mooring lines, three modules are called Precision Optical
Calibration Module (POCAM) and emit calibrated, intense, adjustable, isotropic,
nanosecond light flashes [21, 22]. The remaining five modules are called STRAW
Digital Optical Module (sDOM) and detect the light with one upwards and one
downwards facing 3-inch photomultiplier tube (PMT) [22]. The modules are
placed along the mooring line above the sea floor at a depth of 30m–110m.
STRAW ’s geometry allows to record the light intensity of each POCAM at dif-
ferent distances with the sDOM, which translates to a relative intensity mea-
surement instead of a more complex absolute measurement [12, 13, 21, 22].

In June 2018, after eight months of development, the two strings were success-
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2.1. First Pathfinder: Strings for Absorption Length in Water (STRAW)

Junction-Box
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Figure 2.4: Sketch of the two STRAW mooring lines. To measure the water’s attenu-
ation length, a POCAM emits an isotropic, intense, and ns-long light pulse which gets
detected by two PMTs in each sDOM.
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2 Pacific Ocean Neutrino Experiment and its Pathfinder Missions

fully deployed by ONC [12]. After the commissioning phase, the detector is
continuously operating with an exemplary lifetime of 98.3 % from March 2019 to
March 2021 [13]. The analysis of two years of data yields an optical attenuation
length of about (28 ± 2)m at 450 nm [13]. By extracting the signature of 40K
decays from the data, a salinity of (2.5 ± 1.4) % is found, which covers the salin-
ity measured by ONC of (3.482 ± 0.001) % [13]. Bioluminescence was identified
as the significant light background, which can even saturate the PMT and data
acquisition (DAQ) capabilities [13].

300 350 400 450 500 550 600 650 700 750
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Figure 2.5: Attenuation length measurement of STRAW[13] compared to data from
Cubic Kilometer Neutrino Telescope (KM3NeT)[23, 24] and Smith and Baker [25]. The
results are presented using violin plots that display the Kernel Density Estimation (KDE)
of the published attenuation values (points), along with their associated uncertainties.
In 2006, KM3NeT published data from the AC9 device manufactured by WETLabs, which
monitored the attenuation length between 1999 and 2003. The 2010 KM3NeT data refers
to measurements taken at various sites, covering a depth range of 2000m–4900m. Smith
and Baker’s method involved purifying water to distinguish the different components
of water absorption. Their reported attenuation length exceeds those of STRAW and
KM3NeT.
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2.2 Second Pathfinder: Strings for Absorption Length

in Water b (STRAW-b)

STRAW-b is the second pathfinder for P-ONE deployed in 2020, positioned ap-
proximately 40m away from STRAW. It consists of ten modules mounted on a
444-meter-long mooring line, as illustrated in Figure 2.6. Each module, except
the Wavelength-shifting Optical Module (WOM), is equipped with a 13-inch
high-pressure-resistant glass housing for added protection. To ensure redun-
dancy, each module is connected to its own data cable, which provides network
connection via glass fibers and power supply with copper cables and is connected
to the junction box positioned at the base of the line.

Section 2.2.1 presents an overview of various modules utilized in a range of mea-
surements that are detailed in Section 2.2.2. These modules and measurements
are controlled and operated by a distributed control system (DCS) described in
Section 2.2.3, which employs a time-over-threshold (ToT) method for detecting
nanosecond-range signals, as explained in Section 2.2.4.

2.2.1 Instrumentation of STRAW-b

Various types of instruments have been installed on the STRAW-b mooring
line, each utilizing a standardized module setup that incorporates electronics
for power management, networking, and a single-board computer. The stan-
dardized module setup also incorporates environmental sensors, including for
internal pressure, temperature, and humidity which serve as checkpoints for
the successful deployment and long-term monitoring of the module’s health.
In addition, an accelerometer and electronic compass measure the module’s
orientation, shielding information of the mooring movements with the currents
[28].

Two LiDAR modules aim to verify the attenuation length measurements from
STRAW and separately determine scattering length and absorption length. It has
a pulsed laser diode as an emitter, and a lens focuses the back-scattered photons
onto a micro PMT device. The laser and PMT are mounted on a two-axis gimbal
allowing a change in the orientation in azimuth and zenith [28, 29].
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WOM−2540m | 120m
PMT-Spectrometer 1−2516m | 144m
LiDAR 1−2492m | 168m
Standard Module 1−2420m | 240m
Mini-Spectrometer−2396m | 264m
Muon Tracker−2372m | 288m
Standard Module 2−2348m | 312m
Standard Module 3−2276m | 384m
PMT-Spectrometer 2−2252m | 408m
LiDAR 2−2228m | 432m

2 Floats−2216m | 444m
(surface | seafloor)

Junction box−2658m | 2m
Anchor−2660m | 0m

Figure 2.6: Sketch of the STRAW-b mooring line (left) with the position of each module.
The Standard Module 3 (upper right) that hosts the art project radioamnion [26] and the
PMT-Spectrometer (middle right and lower right [27]) are shown exemplarily.
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One Muon-Tracker module utilizes two separate 2x2 arrays of plastic scintillator
tiles positioned between a certain distance. If a muon is propagating through
the scintillator, light is emitted. Two SiPM matrices measure the induced light in
each scintillator at diagonal corners. Approximate directional information can
be obtained in the case of time-correlated events in separate scintillator tiles [28,
30].

Two PMT-Spectrometer modules are characterizing the bioluminescence emis-
sions. Each module hosts 12 PMTs with different wavelength filters to monitor
the spectrum and intensity of nearby bioluminescent organisms. Furthermore,
a low-light camera is included to capture the bioluminescence, including the
position. This thesis focuses mainly on the camera (Chapter 3), processing the
images (Chapter 6) and the interpretation of the images (Chapter 8). In ad-
dition, the module hosts a Mini-Spectrometer from Hamamatsu similar to the
Mini-Spectrometer module outlined in the following [28, 31].

The Mini-Spectrometer module is composed of five Mini-Spectrometer from
Hamamatsu [32] and the same low light camera as the PMT-Spectrometer mod-
ule. The CMOS1-based Mini-Spectrometer is a complementary device to the
spectrum measurement. It has lower sensitivity to light but a finer resolution on
the spectra than the PMT-Spectrometer. However, it turned out that the sensi-
tivity is too low to measure bioluminescence emissions [28, 33].

In addition to its scientific objectives, specific modules of the project also serve
as hosts for art installations created in collaboration with the Sonderforschungs-
bereich 42 (SFB42) [2], a research group consisting of both artists and physicists
based in Munich. This collaborative project, known as UNDERCURRENTS [1],
involves a group of artists from the Fine-arts Academy in Munich under the
guidance of Diogo da Cruz and Jol Thomson. An aspect of this collaboration
is to engage and educate the general public about P-ONE. Another aspect is
to facilitate a creative partnership between the two disciplines which can turn
science into captivating art and forge a deeper public understanding of science
[34]. As one result, the sound art project radioamnion (https://radioamnion.net
was developed and built together with Jol Thomson. During each full moon, ra-

1CMOS: complementary metal-oxide-semiconductor

13

https://radioamnion.net


2 Pacific Ocean Neutrino Experiment and its Pathfinder Missions

dioamnion broadcasts sonic transmissions of invited artists. Because the mod-
ule hosting radioamnion2 has a connection failure, the initial planned acoustic
transmission is now fulfilled by LEDs in other modules where a Fourier trans-
form decodes the acoustic signal into a light pattern.

2.2.2 Operation of the Instruments in STRAW-b

In STRAW-b, the data acquisition (DAQ) records the data either continuously or
schedules measurements to collect data. All modules contain ambient sensors
to monitor the conditions inside the pressure housing, and some modules host
additional sensors, as outlined in Section 2.2.1. This section presents a summary
of the various measurements, while Table 2.1 provides information on the mea-
surements, including their readout rate, sensor types, and corresponding hosting
modules.

The standardized module, which each module builds on, is equipped with a
3-axis accelerometer and a 3-axis magnetometer that provide information on
movement and orientation. Additionally, the module includes sensors for moni-
toring pressure, humidity, temperature, and power consumption within the pres-
sure housing. The DAQ also keeps track of various software and system settings.
Sensor data is collected every 10 s, while software and system settings are only
saved when changes are made to reduce unnecessary data. The collected data
is labeled with the data-product-code SMRD3 and is stored in Oceans 2.04, a
publicly available database that is part of the ONC infrastructure.

The Mini-Spectrometer and PMT-Spectrometer modules contain a camera
(Chapter 3) and a mini-spectrometer from Hamamatsu [32], respectively.
These sensors operate synchronously because they share the same serial
peripheral interface (SPI)-bus for communicating. The camera has a readout
limitation, resulting in one image and spectrum being recorded every 99.5 s.
More detailed information on the measurement sequence can be found in
Section 3.4. Moreover, the PMT-Spectrometer 2 captures a set of images with
enabled LEDs (Chapter 4) in the neighboring module (LiDAR 2) once per hour

2radioamnion is hosted by the Standard Module 3 (Figure 2.6)
3The internal file structure of all data-product-codes is summarized in Appendix A
4Oceans 2.0 - or the newer version Oceans 3.0
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Table 2.1: Summary of STRAW-b measurements including readout rate, sensor type,
and hosting module.

Sensor Modules Rate Measurement

3-Axis Accelerometer All Modules 0.1Hz continuously
3-Axis Magnetometer All Modules 0.1Hz continuously
PTHa All Modules 0.1Hz continuously
6 Powermeterb All Modules 0.1Hz continuously
3 Temperature All Modules 0.1Hz continuously
Camera Mini- & PMT-Spec. ∼1/90Hz continuously
Mini-Spectrometer Mini- & PMT-Spec. ∼1/90Hz continuously
Mini-Spectrometerc LiDAR 2 timesc hourly
16 PMTs (ToT counts) PMT-Spec. 1 kHz continuously
16 SiPMs (ToT events) Muon-Tracker >1GHzd continuously
LiDAR (ToT events) LiDAR >1GHzd hourly

aPressure-Temperature-Humidity sensor
bThe Powermeter measures for each channel current and voltage separately
cuse for Laser calibration before and after each LiDAR measurement
dOnly the events are stored. The time resolution of the time-to-digital converter (TDC) is

below 1 ns.
to track its position (Chapter 7). The measurement with enabled LEDs ceased
after the module failure of the LiDAR 2 at the end of 2021. The LED activation
and configuration information is logged by the DAQ and stored in a file with
data-product-code SMRD3. Additionally, the camera and Mini-Spectrometer
each have their own files, which are labeled with data-product-codes MSSCD3

and MSSD3, respectively.

The PMT-Spectrometer continuously records the PMT signals in the low preci-
sion mode of the Trigger Readout Board (TRB) [35], which involves counting ToT
events rather than storing the time and duration of each event separately as de-
scribed in Section 2.2.4. The ToT counts are stored with a frequency of 1 kHz in
the PMT-Spectrometer. Once a day (around midnight UTC), a threshold scan is
conducted for the ToT measurement, and the measurement is interrupted. Dur-
ing the threshold scan, the TRB is rebooted to prevent communication issues
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that may arise. The DAQ system continuously monitors communication, and if
an issue arises, it triggers a reboot of the TRB and restarts the measurement.
The PMT-DAQ files (data-product-code PMTSD3) rotate every hour to ensure
file sizes remain below 100 MB. The PMT-Spectrometer 2 is not used for this
measurement as it has a broken FPGA that applies the thresholds, making it
impossible to read out the PMTs.

The Muon-Tracker utilizes the high precision mode to track photon detection
in the scintillators with the SiPM. In this mode, all ToT events, i.e., events with
timestamps and durations over the threshold, are stored as described in Sec-
tion 2.2.4. Due to the low dark rate of the SiPMs, the files rotate only once a
day, remaining below 100 MB, with the data-product-code MTSD3. As with the
PMT-Spectrometer, a threshold scan is performed once a day, and the DAQ sys-
tem continuously monitors the TRB, triggering a restart of the measurement if
needed.

The LiDARs perform various measurements, including a daily scan of the sur-
rounding volume with the gimbal rotating over 2𝜋. This scan is repeated without
the enabled laser to gather information on in-situ afterpulsing characteristics.
Additionally, a daily laser scan is performed, where the gimbal moves to a fixed
position, and the laser changes it’s pointing relative to the optical axis of the
detection optics. When no other measurements are ongoing, two LiDAR mea-
surements with the enabled laser and one without the enabled laser are taken
per hour. During each measurement, events are recorded for 60 s as the gim-
bal moves in the same direction as the laser scan position. Each measurement
is saved in one Hierarchical Data Format (HDF5) file identified by the data-
product-code LIDARSD3. In addition, the raw HLD files (can be multiple for a
single measurement) from the TRB are stored and synchronized with the ONC
database.

Additional information is provided in Appendix A, which includes an overview of
the data-product-codes, rollover intervals, and tables summarizing the internal
HDF5 file structure of all files.
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Figure 2.7: The figure shows a screenshot of the real-time monitoring system based on
the TIG Stack (Telegraf, InfluxDB, Grafana) [37, 38], displaying the last connection to
the LiDAR 2 module. This system collects sensor data in real time from various modules
and allows for easy visualization and detection of any anomalies through customizable
Grafana dashboards.

2.2.3 Distributed Control System and Data Acquisition

The master control software (MCTL) operates all STRAW-b modules (except for
the WOM) and runs on each of them as an autonomous controller implemented
as a distributed control system (DCS) [36]. Its primary goal is to ensure the safe
and streamlined operation of all sensors, both in manual and automated modes.
To this end, the MCTL includes various functionalities such as safety control,
logging, sensor operation and monitoring, bus management, inter-module com-
munication, DAQ, and measurement execution and scheduling.

The safety control prevents any actions that could potentially damage the sen-
sors or cause data loss. For example, if a LED is activated in the same or neigh-
boring module, the safety control will block the powering of PMTs to avoid ex-
posing them to intense light. The logging function generates a detailed record
of system events, warnings, and errors, which is essential for effective debug-
ging, especially in case of rare issues. The sensor operation manages low-level
functions required to operate individual sensors, while the sensor monitoring
ensures their proper functioning and triggers corrective action in case of any
malfunctions.
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The monitoring system of each module is integrated into a real-time monitor-
ing system for the entire detector, which uses the open-source tools Telegraph,
InfluxDB, and Grafana to collect, store, and visualize sensor data in real-time
[37, 38]. The combination of the tools is also called the TIG Stack[38]. Telegraph
is used to gather data from various sources, including sensors and services, and
send it to InfluxDB, which stores the data as a time series. Grafana is used to
create customizable dashboards to visualize the data in real time, allowing for
easy monitoring and detection of any anomalies. Additionally, the system has
the ability to send alerts in real-time based on predefined thresholds, ensuring
that any issues are addressed promptly [37, 38]. Figure 2.7 shows the last con-
nection of the LiDAR 2 module as a demonstration of the monitoring system’s
performance. A summary and discussion of module and sensor malfunctions
within the STRAW-b system can be found in Appendix B.

Some electronic components share a communication bus where only one com-
ponent can send data at a time, such as SPI (serial peripheral interface) or I2C
(Inter-Integrated Circuit). The bus-management function keeps track of all com-
munications and distributes the available resources to prevent interference. The
inter-module communication relies on network protocols like secure shell pro-
tocol (SSH) and is used to coordinate measurements and ensure safety.

The DAQ collects sensor values and stores data in HDF5 files using lossless data
compression and checksums natively supported by HDF5 [39]. The file rollover
is initialized by the DAQ for continuous measurements after fixed periods, such
as hourly or daily. The structure of HDF5 files used by the DAQ is designed to
organize time series data. A time series is a collection of measurements made
over time, and each HDF5 group in the file represents a unique time series. The
first dimension of all datasets within a group corresponds to time, with each
HDF5 group containing a time dataset that stores the timestamp of the time
series. This structure ensures that all datasets within a group have the same size.
Figure 2.8 illustrates the generic file structure. In addition, metadata are stored
in the attributes of the HDF5 file, group, and datasets. Appendix A summarize
the internal file structure for all generated files [39].

The measurement execution and scheduling function manages high-level tasks
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time A
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time C
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Figure 2.8: Generalized HDF5 file structure of STRAW-b’s DAQ. It exemplarily shows
three data groups (A, B, C), each with two datasets and the time dataset.

such as initiating, executing, and stopping measurements.

After recording the data on the modules, it is then downloaded and integrated
into Oceans 2.0. Oceans 2.0 - or the newer version 3.0 - is the data base (DB) for
all experiments connected to the ONC infrastructure and the DB including all
data is publicly available [40]. MCTL is equipped with an interface to ONC ’s
shutdown procedure in case of the modules need to be powered off. In such a
scenario, MCTL stops all measurements, stores the data, and puts the module in
a safe state concerning software and hardware. The final shutdown command
to the operating system is triggered by ONC ’s shutdown procedure.

2.2.4 Fast signal digitization

Both STRAW and STRAW-b utilize a similar method for digitizing signals from
PMTs or SiPMs where a nanosecond precision is required. This method involves
measuring the ToT of a signal to efficiently reduce data. When a single exceeds
a user-defined threshold, the starting time and duration of each transgression
are measured by a TDC with sub-nanosecond precision. To achieve sensitivity
to single photons, the threshold is set at an appropriate level. The PMTs are read
out using a TRB (version TRB3sc) that employs a TDC [35].

The readout system allows the detectors to operate in two modes: high-
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precision and low-precision. In the high-precision mode, the exact timestamp
of each pulse is recorded with sub-nanosecond precision relative to the master
clock, enabling analysis at the single-photon level. In contrast, in the low-
precision mode, only the pulse counts detected within a specified time interval
are recorded.

However, storing the ToT data for long-term monitoring is not always feasible
due to the large data size it generates (up to 100MB per minute). Therefore,
the DAQ operates in the low-precision mode where only the signals threshold
transgressions are counted. The counters are then recorded at a frequency of
approximately ∼33Hz and ∼1 kHz in STRAW and STRAW-b, respectively.

To summarize, the readout system can operate in either high-precision mode,
where each event is stored individually, or low-precision mode, where only the
count of single events is recorded. The LiDAR and Muon-Tracker operate in
high-precision mode since both require sub-nanosecond precision and the dark
rates are optimized to a few Hz, allowing long-term monitoring in high-precision
mode. Typically, the sDOM and PMT-Spectrometer operate in low-precision
mode. During a measurement run of STRAW, where the POCAMs emit light,
the sDOM records in high-precision mode to enable attenuation measurements
[21, 22].

2.2.5 A Software Package for the Data Analysis

Managing and analyzing large datasets, like those generated by the STRAW-b
detector, can be a challenging task. To simplify this process, a user-friendly soft-
ware package called strawb has been developed in Python. This package pro-
vides tools for syncing data from the ONC database to a local database, as well
as importing and analyzing the data. Currently, the strawb package repository
is not public and is hosted on GitHub within the P-ONE group. This allows only
members of the group to access and contribute to the package.

Strawb offers several key features, such as the ability to synchronize available
data from the ONC database to a local database. This feature allows users to
share their code with others, with the package taking care of synchronizing the
required files without downloading all files from the ONC database. By down-
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Figure 2.9: Locations of selected devices at the Cascadia Basin Node, including the
STRAW and STRAW-b detectors, as well as the current meter and acoustic Doppler pro-
filer (ADCP), which booth measure the water current. Position data accessed from the
ONC database[40] using the strawb software package.

loading only the required files, strawb minimizes the amount of data transfer
and optimizes working with large datasets.

Additionally, strawb provides basic import functionalities for different file types,
making it easy to import and process data from the STRAW-b detector. This
feature reduces the time and effort required for data management.

Strawb also includes basic and advanced analysis tools that every user can use
to streamline their work with the data. These tools include functions for data
visualization, quality control checks, and event selection, as well as advanced
analysis techniques such as signal processing and machine learning.

Additionally, strawb can access includes functionalities to access other sensors
available on the ONC database, such as current profilers and temperature sen-
sors. It also includes functionalities to access metadata from the ONC database,
such as position information of the devices, as shown in Figure 2.9. With its
user-friendly interface and comprehensive suite of tools, strawb provides an ef-
ficient and effective solution for managing and analyzing large datasets from
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the STRAW-b detector.
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We’d still be getting only black-and-white pictures

from our digital cameras.

Larry Scarff, The New York Times [41]

STRAW-b hosts in total three cameras in three different modules, both PMT-
Spectrometer and the Mini-Spectrometer. A sketch of the STRAW-b mooring
including the position of the three modules is illustrated in Figure 2.6. All cam-
eras are oriented upwards in the direction of the mooring line, with the PMT-
Spectrometer camera integration depicted in Figure 3.1. The cameras provide vi-
sual insights into the environment, such as sedimentation attached to the mod-
ule housing (Chapter 7) and bioluminescence (Chapter 8).

This chapter aims to provide an overview of the hardware components of the
cameras, the conditions under which images are captured, and a summary of the
overall performance of this measurement, which has demonstrated an uptime
of over 99 % since 1st December 2021.

3.1 The Camera: a Synergy with the IceCube-

Upgrade

STRAW-b uses a customized camera, originally developed in collaboration with
Arducam for the IceCube Upgrade and IceCube Gen2 [42, 43]. This decision was
made to leverage the synergy between neutrino detectors, where hardware must
operate in remote locations with limited space, low power consumption, and in
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Camera

LEDs

Figure 3.1: Pictures of a fully assembled PMT-Spectrometer with the marked position
of the camera and light-emitting diodes (LEDs). The module connects to the string at
the gaps of the metal rings (bottom). After the deployment, this side of the module is
pointing upwards.

35mm

35mm
Figure 3.2: The camera developed for the IceCube Upgrade and IceCube Gen2 [42]. It
is a customized system based on the Arducam with an IMX225 color image sensor from
Sony and a 1312 x 979 pixels resolution. For the optics, the camera uses an Arducam
lense M25170H12 with a field of view (FoV) of ∼170◦ [43].
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low light conditions. For reference, Figure 3.2 displays pictures of the camera,
along with its dimensions.

In the IceCube Upgrade and IceCube Gen2, the cameras will be integrated into
the modules deployed in the Antarctic ice to study various parameters, such as
the optical properties of the glacial and drill hole ice, and detector geometry,
including the location and orientation of the optical modules and cables. These
parameters are crucial for calibrating IceCube Monte Carlo simulations and im-
proving event reconstructions [42, 43].

3.1.1 Hardware Components

The camera is composed of several hardware components, as detailed in Ta-
ble 3.1. At the core of the camera is the IMX225LQR-C CMOS image sensor,
which is controlled by a complex programmable logic device (CPLD). The CPLD
communicates with the module’s data acquisition (DAQ) system via serial pe-
ripheral interface (SPI), while the DAQ system itself runs on an Odroid single-
board computer with a Linux operating system.

A wide-angle M12 lens with a diameter of 22mm and a focal length of 1.7mm
provide a FoV of approximately 170◦. The refraction of the glass housing lowers
the FoV by some degrees. In the PMT-Spectrometer modules, the FoV will be fur-
ther reduced by the mounting due to the minimal space. In contrast, STRAW-b’s
third module with camera provides an obstacle-free view for the camera [42]. In
Chapter 5, the system’s optics are summarized with more details.

Table 3.1: Main components of the camera developed for the IceCube Upgrade and
used in STRAW-b [42].

Component Type Manufacture

CMOS IMX225LQR-C SONY Semiconductor Solutions Co
CPLD LCMXO2-1200HC Lattice Semiconductor Co.
RAM MT48LC4M16A2P-6A Micron Technology Inc.
Lense M25170H12 Arducam
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A wide-angle M12 lens with a diameter of 22mm and a focal length of 1.7mm
provides a FoV of approximately 170◦. However, due to the refraction of the
glass housing, the field of view (FoV) is reduced by a few degrees. In the PMT-
Spectrometer modules, the FoV is further reduced by the mounting due to the
limited space. On the other hand, the Mini-Spectrometer module provides an
unobstructed view for the camera. For more details about the system’s optics,
please refer to Chapter 5.

One of the key features of the IMX225LQR image sensor is its high sensitiv-
ity, which Sony claims to be approximately twice that of the previous product
IMX238LQJ. Moreover, Sony’s image sensors have some of the most respon-
sive pixels, including the one in this camera [44]. The sensor has a pixel size
of 3.75 µm by 3.75 µm and an active diagonal of 6.09mm, with a native resolu-
tion of 1312 x 993 pixels. After cutting black, inactive, and dummy pixels, the
resolution becomes 1305 x 977 pixels.

Color processing, specifically the demosaicing method described in Section 3.3,
introduces boundary effects that may affect the image quality. The datasheet
recommends cutting a margin of 8-9 pixels symmetrically from all sides [45].
Moreover, the image sensor is designed for a final resolution of 1280 x 960 pixels,
or a 4:3 aspect ratio, which is a standard for television screens and computer
monitors [46]. To summarize, the resolution of 1305 x 977 pixels is reduced to
1297 x 977 pixels, and after color processing and the boundary effect margin
are taken into account, the final image resolution becomes 1280 x 960 pixels.
Table 3.2 provides a summary of the different resolutions and the dimensions of
the image sensor.

3.1.2 Exposure Time and Gain

This section covers the camera configuration settings, which mainly consist of
exposure time and gain. The exposure time parameter 𝑝 is used to configure
the exposure time of the camera. However, the translation of this parameter
to actual time units is unknown for this camera. To determine this mapping,
reverse engineering is required. One approach is to capture a scene from which
the start and stop time of the picture can be extracted, for example, by using a
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Table 3.2: Resolution and corresponding dimensions of a Sony IMX225LQR Image Sen-
sor. Each pixel has a size of 3.75 µm by 3.75 µm. The image sensor has more pixels than
the final image resolution, as some are black or dummies. Also, the color processing
requires a margin to cut boundary effects, resulting in a recommended resolution of
1280x960 pixels [45].

Pixel Dimensions

Type Horiz. Vertical Total Horiz. Vertical Diagonal

native 1312 993 1.30M 4.92mm 3.72mm 6.17mm
effective 1305 977 1.27M 4.89mm 3.66mm 6.11mm
active 1297 977 1.27M 4.86mm 3.66mm 6.09mm
w/o margins 1280 960 1.23M 4.80mm 3.60mm 6.00mm

monitor, moving parts, or blinking LEDs. However, this requires a specific setup
and accessibility to the camera, which is not possible for the deployed cameras.
Another approach is to time the command execution for different exposure time
settings.

In this study, the timing approach was used. Hundreds of pictures were taken,
and the timings were extracted. A linear mapping function was fitted to the
timings, resulting in 𝑡(𝑝) = 𝑝 ∗ 𝑚, (3.1)

where 𝑚 is the best-fit parameter. The maximum exposure time for the camera
was determined to be 63.5 s, with 𝑝 = 31751. The value of 𝑚 was calculated to
be 1/500 s.
As previously stated, the second configuration parameter refers to gain. This
can be directly applied to the image sensor to enhance the dynamic range of an
image and utilize the camera’s bit-depth in low-light scenarios such as capturing
faint bioluminescence in the depths of the ocean. Two types of gain exist: analog
gain, which amplifies the analog pixel signal before digitization, and digital gain,
which enhances the values after digitization. Following the datasheet of the
image sensor, the gain is measured in in decibel (dB) [45]. Gain𝐴 in dB is defined
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as 𝐴 = 10 ⋅ log10 (𝑋𝑜𝑢𝑡𝑋𝑖𝑛 ) (3.2)

where 𝑋𝑖𝑛 is the value before the gain and 𝑋𝑜𝑢𝑡 the value after. Transforming the
function yields the scaling between 𝑋𝑖𝑛 and 𝑋𝑜𝑢𝑡𝑋𝑜𝑢𝑡 = 10𝐴/10 ⋅ 𝑋𝑖𝑛 (3.3)

with non-linear scaling factor 10𝐴/10. The image sensor applies only analog gain
for gain up to 30 dB. Above 30 dB up to the maximum of 72 dB, it is a combination
of the 30 dB analog gain plus the required digital gain. A drawback of the digital
gain is that it decreases the recordable intensity range without increasing the
resolution. Furthermore, a digital gain can be applied later offline with greater
adaptability and without lowering the intensity range. Generalized, digital gain
removes some information irreversibly, like digital zoom in photography. How-
ever, this 30 dB threshold was not known initially, and the gain was set to 50 dB
initially to adapt to the low light environment.

The image sensor utilizes solely analog gain for gains of up to 30 dB. For val-
ues above 30 dB, up to the maximum of 72 dB, it employs a combination of the30 dB analog gain and the necessary digital gain. One downside of digital gain
is that it can narrow the recordable intensity range without improving resolu-
tion. Additionally, digital gain can be applied post-capture with greater flexibil-
ity and without diminishing the intensity range. Generally, digital gain causes
irreversible information loss, similar to digital zoom in photography. Nonethe-
less, the 30 dB limit was not initially known, and the gain was initially set to50 dB to adjust to the low-light environment. On the 22nd of December 2021 at
14:30 UTC, the correction took place by lowering the value to 30 dB and disabling
the digital gain [45].

3.1.3 Limitations and Issues

The camera developed for the IceCube Upgrade, and IceCube Gen2 could benefit
from improvements in several areas, including enhanced support through Ard-
ucam, improved documentation, firmware, and software. However, it is worth
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3.2. Color Image Sensor

noting that custom products, especially those produced in small quantities, may
have limited support and documentation, which is a common challenge in the
custom manufacturing industry.

One major issue with the camera is its slow readout speed. It takes approxi-
mately 36 s to download a 1.2M pixel image over the SPI-bus, which is relatively
long. In some cases, it even takes as long as 47 s, although the reason for this
difference is unknown. Attempts to speed up the download by increasing the
SPI transmission frequency failed, resulting in corrupt pictures. Unfortunately,
the cause of the limited readout speed remains unknown.

Another issue with the camera is the firmware, which has closed source code
and contains a bug that causes the camera to freeze occasionally. The more
images taken, the higher the chance of failure. While power-cycling the camera
after each image taken works reasonably well, it cannot prevent image losses. It
must be considered if this power-cycle has a non-optimal influence on individual
components of the camera or if it speeds up the aging.

Attempting to resolve this issue and make the camera operational for module
integration consumed valuable time, and there was not enough time remaining
to calibrate the cameras before deployment. Switching to a more performant
camera was not feasible at this stage due to late detection of issues and depen-
dencies on other components in the module.

3.2 Color Image Sensor

CMOS and CCD color image sensors measure intensity and not color directly.
This means that the image is initially black and white.

In order to capture and measure color, a Color Filter Array (CFA) is placed over
the image sensor. This array comprises a series of color filters arranged in a re-
peated pattern, where each pixel is assigned a specific filtered light. Ideally, the
different types of filters are evenly distributed in two perpendicular directions,
alternating at every other pixel position. This means that each individual pixel
captures the intensity of a particular filtered color, while neighboring pixels rep-
resent different colors in a regular grid pattern. The filter matrix is sometimes
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referred to as a mosaic.

In the present day, there exist various

Figure 3.3: A Bayer Filter Mosaic
on the pixel array of an image sen-
sor. The filter mosaic transforms
a natively black-and-white image
sensor into a color image sensor
[47].

arrangements of filters, each offering its
own set of advantages. When it comes to
consumer products, the filters are usually
designed to replicate the three primary colors
of the human eye: red, green, and blue. One
of the most widely recognized filter patterns
is known as the Bayer Filter, which was
patented by Bryce Bayer in 1976 [47]. This
filter pattern, depicted in Figure 3.3, consists
of a unit cell containing one red, one blue,
and two green pixels, as the human eye
is most receptive to the color green. The
cameras used in STRAW-b incorporate the
Bayer Filter technology.

Other filter types introduce pixels without a filter to enhance low-light perfor-
mance while still maintaining color detection. These filters are called RGBW,
where W stands for white. In one version, the white pixel replaces one of the
two green pixels, resulting in a white density of 25 %. However, other arrange-
ments with higher white densities are also available. Additionally, some filters
introduce other colors, such as red, green, and blue.

For deep-sea applications, the enhanced low-light performance of white pixels
and colors adapted to the environment can be advantageous. For instance, if
a camera is to be integrated into P-ONE, it may require colors that are better
suited for the environment.

3.3 Demosaicing of the Raw Image

To reconstruct a full-color image where all colors are calculated for all pixel posi-
tions, any raw image captured with a CFA must undergo demosaicing. This is a
non-trivial process, and different algorithms have been developed, each perform-
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Figure 3.4: Demosacied image (left) and visualization of the RAW RGB Bayer mosaic
(right), where both show the same scene with bioluminescence. Typically colored photos
result from two steps (see Section 3.2). First, an image sensor with a Bayer mosaic of
color filters records an image. Second, a demosaicing algorithm calculates the intensity
of all colors at every pixel. In this picture, structures are smeared out as the exposure
time is about one minute (see Section 3.4), currents are in the range of 10 cm/s, and
bioluminescence is in the order of seconds usually.

ing better under certain conditions. Demosaicing algorithms should compen-
sate for several characteristics, such as avoiding false color artifacts, preserving
image resolution, low computational complexity for fast processing, and more.
However, all methods face the inherent problem of estimating colors at pixels
where the color is unknown.

To produce the demosaiced images shown in this thesis, the software package
OpenCV and a bi-linear interpolation with edge detection 1 was used [48]. An
example of a raw and a demosaiced image is provided in Figure 3.4.

However, it is worth noting that demosaicing is only used for image visualization
purposes. Further analysis is based on the raw image data, where all pixel in-
tensities are used independently of their color, or the different colors are treated
separately. This approach has several advantages, including the fact that demo-
saicing artifacts do not need to be considered, and the analysis is independent of
any specific algorithm and its strengths and weaknesses in different conditions.

1The bi-linear interpolation with edge detection called COLOR BAYER BG2RGB EA in
OpenCV [48].
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Figure 3.5: Transmittance spectra from the different color filters of the color image
sensor (IMX225LQR-C), which is used in STRAW-b’s cameras. Filters are arranged in
a classical Bayer Pattern, allowing the camera to take colored images (see Section 3.2)
[45].

Additionally, demosaicing often assumes perfect filtering of colors, whereas in
reality, filters have a wider transmittance spectrum. An illustration of the spec-
tra of the IMX225LQR-C image sensor is shown in Figure 3.5 [45].

3.4 Measurement Sequence

For communication, the camera uses a SPI-Bus, which it shares with other de-
vices in the module. However, a SPI-Bus only permits communication with one
device at a time. As a result, the camera’s measurements must be synchronized
with a Mini-Spectrometer from Hamamatsu [32]. The measurement scheme is
based on the principle of maximizing exposure time, for two reasons. Firstly,
because both devices are not highly sensitive to low-light conditions in the deep
sea. Secondly, it minimizes the downtime ratio of the camera since the im-
age transferred always takes the same time per image, irrespective of the ex-
posure time. As detailed in Section 3.1.1, the camera’s maximum exposure time
is 63.5 s, and the image transfer takes around 36 s, resulting in 99.5 s for a full
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Figure 3.6: Gantt Chart of the Camera and Mini-Spectrometer measurements, which
have to be synchronized as they use the same communication bus SPI. One iteration
needs 99.5 s to maximize the camera’s exposure to download time ratio. Occasionally, a
measurement can be performed with enabled LEDs, illustrated in the first iteration of
the sequence.

capture.

To ensure efficient and reliable measurements, the following sequence is imple-
mented:∙ The Mini-Spectrometer is configured and starts a 99.5 s exposure.∙ The camera is configured and starts a 63.5 s exposure.∙ The image is transferred from the camera, which takes approximately 36 s.∙ The Mini-Spectrometer data is transferred in about 1ms.∙ The sequence restarts

The sequence is visualized in a Gantt chart in Figure 3.6.

Additionally, the camera captures images with enabled LEDs to track the
neighboring module’s position and sedimentation. For further details regarding
the LEDs configuration and DAQ summaries, the reader should refer to
Chapter 4.
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Table 3.3: Total taken images per device and the measurement up-time. The up-time
is calculated from the actual recorded images and the theoretical number of captured
images based on the 99.5 s/image under ideal conditions for the measurement period.

Module Images Up-Time Measurement Period

Mini-Spectrometer 1 36176 83.2 % 2021-04-22 to 2021-06-11 a

PMT-Spectrometer 1 519856 97.2 % 2021-04-28 to 2022-12-31 b

PMT-Spectrometer 2 512975 95.9 % 2021-04-22 to 2022-12-31 b

aConnection lost to Mini-Spectrometer 1 module on 2021-06-11.
bConsidered period for up-time, measurement is ongoing at the time of writing this thesis.

3.5 Commissioning, Data Acquisition and Perfor-

mance

The Data Acquisition (DAQ) system of STRAW-b, as described in section 2.2.3,
is responsible for collecting and storing data from various devices in a module.
To achieve reliable and automated storage of data, the DAQ uses hdf5 files that
allow for storing sensor data and metadata in a single file, with built-in compres-
sion support [39]. To avoid large file sizes, data is losslessly compressed, and a
fixed file rollover interval of 1 h is defined for the camera DAQ. The hourly files
have a size of approximately 50 MB, ensuring efficient storage of the data.

In the database Oceans 2.0 from Ocean Networks Canada (ONC), camera files
are identified by the data-product code MSSCD. These files contain raw images,
along with exposure and gain settings, capture times, and other metadata that
are crucial for data interpretation. Since LED emissions are also relevant to the
camera, the LED data are stored in a separate file with their data-product code,
SMRD, in ONC’s database. For more information about the flasher DAQ, readers
are directed to Section 4.3. Additionally, details on the internal Hierarchical Data
Format (HDF5) file structure can be found in Appendix A.

To ensure high-quality data and maximize uptime, multiple improvements have
been made to the measurement procedure since the modules were first initial-
ized. As depicted in Figure 3.7, the camera performance on all three modules has
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Figure 3.7: Performance of the cameras as an average per week. A camera measure-
ment cycle is fixed to 99.5 s due to the synchronization with the Mini-Spectrometer.
Both devices share the same SPI bus, where only one device can use the bus simulta-
neously. A performance of 100 % for a period represents that every 99.5 s one picture is
stored in the DAQ over the entire period. Any issue which prevents image recordings
causes fewer pictures to be taken and result in lower performance. This can be failures
of the camera firmware, the DAQ, or broken data after the transmission to shore. Ta-
ble 3.3 shows the overall performance per device.

notably enhanced over time, and the total number of captured images and over-
all uptime are listed in Table 3.3. PMT-Spectrometer 1 started capturing images
a few days later than the Mini-Spectrometer and PMT-Spectrometer 2 to ensure
compatibility with the active PMTs and related DAQ. Unfortunately, on June
11th, 2021, the Mini-Spectrometer module experienced an failure and stopped
communicating. Despite this setback, the remaining two modules have con-
tinued to record data, including images, up to the current time of writing this
thesis. A summary and discussion of module and sensor malfunctions within
the STRAW-b system can be found in Appendix B. Investigations suggest that
the malfunctioning modules are booting properly, and the issue lies specifically
with the network connection. Furthermore, the the statistic of ONC about con-
nector failures is approximate 10 %, something considered too high for P-ONE.
Consequently, penetrators and connectors are not employed within the P-ONE
system to mitigate this issue.

As summarized in Section 3.1.3, the camera has some firmware bugs that cause
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picture losses. Unfortunately, the code is not open source, and the company
producing the camera does not provide any support, making it impossible to
solve the issue. Initially, the DAQ had some issues, especially with the deli-
cate camera firmware, which resulted in lower performance. However, several
updates have been made to the DAQ over time, solving the known issues and
increasing its overall robustness against camera malfunctions. Most of these
improvements were implemented until October 2021 when the commissioning
was completed.

Unrelated to the DAQ, the modules have faced some power shutdowns that
lasted from hours to days. Sometimes, ONC had to switch off the power for
maintenance or infrastructure updates, and unplanned power outages also oc-
curred. Historical uptimes and the current status of ONC infrastructure are
available on ONC’s status page2.

As of the writing of this thesis, over one year of data has been recorded, and the
measurement on both remaining devices is ongoing. Overall, the two modules
have shown up-times of over 95 % for the whole period and over 99 % since the
1st of December 2021 (as marked in Figure 3.7). In total, the three cameras have
taken more than 1 million images, adding approximately 850 images per camera
every day.

2ONC’s status page: https://oceannetworkscanada.statuspage.io and historical up-
time: https://oceannetworkscanada.statuspage.io/uptime
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4 Flasher System for the Optical
Modules

A camera in Strings for Absorption Length in Water b (STRAW-b) requires arti-
ficial light to image its surrounding in the permanent darkens of the deep sea.
Therefore, STRAW-b utilizes up to six LEDs per camera, as illustrated in Fig-
ure 4.1. The cameras face upwards in the deployed modules, with the neighbor-
ing module above being typically centered in the captured image. This neigh-
boring module contains four light-emitting diodes (LEDs) split into two sets,
each set equipped with a blue and a white LED. One set points downward to-
ward the camera, while the other points horizontally. Additionally, both PMT-
Spectrometer modules have two extra LEDs that function as a flasher system,
providing illumination for the surrounding area. These LEDs are situated near
the glass and point in the same direction as the camera, with the camera posi-
tioned between them. While a shield blocks direct light from the LEDs, reflec-
tions on the glass sphere are still visible. Figure 6.1 displays the appearance of
enabled LEDs in the images, and Table 4.1 presents the modules that incorporate
LEDs, including their orientation, color, and wavelength.

4.1 Hardware Components of the Flasher System

The flasher system consists of two main components: the LED and a powerful
LED driver. Table 4.2 lists the three different LEDs and drivers used for STRAW-b.
A single flasher is the combination of one driver and one LED.

LEDs use semiconductors to emit light, and the color of the emitted light is de-
termined by the band gap of the semiconductor. The higher the band gap, the
higher the photon energies and the shorter the wavelength of the emitted light.
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Figure 4.1: Arrangement of the neighboring modules LiDAR and PMT-Spectrometer
with the camera and LEDs. The LEDs have white and green colors, and Table 4.1 provides
the mapping between position and color.

Table 4.1: Summary of the different LED configurations for all modules in STRAW-b
with a LED [49–51].

Module Address Pointing Color Wavelength

Muontracker & 51 horizontal white 410 nm–710 nm
LiDARs 52 horizontal UV 365 nm

53 downwards white 410 nm–710 nm
54 downwards UV 365 nm

PMT-Spectrometer 51 upwards white
53 upwards white 410 nm–710 nm

Standard module 51 horizontal white 410 nm–710 nm
52 horizontal royal blue 444 nm
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Table 4.2: Summary of the main flasher components [49–52].

Device Product code Wavelength

LED driver LM2759
LED UV 10-UV-B130-F365-00 365 nm
LED blue XPEBRY-L1-R250-0R01 444 nm
LED white XPGDWT-01-0000-00ME1 410 nm–710 nm
(a)
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Figure 4.2: Overview of the different LED driver modes. There are two modes, torch
and flash. The torch mode provides lower currents (a). Therefore it is not limited in time.
In contrast, the flash mode limits the maximum duration (b) of the flash to reduce the
risk of an overheating LED [52].

The band gap also determines the minimum voltage required for the LED to
emit light. The current flowing through the LED increases exponentially with
the applied voltage 𝑈 , as described by the Shockley diode equation:

𝐼 (𝑈 ) = 𝐼𝑆 (𝑒 𝑈𝑛𝑈𝑇 − 1) (4.1)

with the reverse bias saturation current 𝐼𝑆 , the ideality factor 𝑛, and the thermal
voltage 𝑈𝑇 . 𝐼𝑆 , 𝑛 depend on the specific type of the LED, and 𝑈𝑇 = 𝑘𝑇/𝑞 is
independent of the Boltzmann constant, electron charge, and temperature of the
p–n junction [53]. Therefore, it is crucial to regulate the current when operating
an LED. This can be achieved with a simple resistor, or with a more advanced
LED driver that provides greater control and power efficiency.

The flasher system uses a configurable LED driver with two different modes,
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Figure 4.3: Radiation spectra of the three different LEDs used in STRAW-b together
with the transmittance of the pressure housing [49–51, 54].

torch and flash. As the name indicates, the flash mode allows for a configurable
maximum duration of up to 1 s and automatically disables itself after that time.
In contrast, the torch mode turns on the LED without a time limit. To prevent
overheating of the LED, which can drastically reduce the lifetime, the torch mode
has lower current configurations than the flash mode.

The configuration mapping to a current and maximum duration is summarized
in Figure 4.2. For every communication to the LED driver, the data acquisi-
tion (DAQ) stores the mode, configuration parameter, and execution time in
the HDF5 (Hierarchical Data Format) file. Additionally, the switch-off signal
is recorded as an event by the DAQ if it is sent to the LED driver. However, this
is not the case for the flash mode, as it automatically disables itself after the
configured flash duration [52].

In STRAW-b, the selection of ultraviolet (UV) and white LEDs was based on their
ability to cover the range of maximum light transparency of water. These LEDs
were strategically placed within the detection range of the PMTs and cameras
to ensure optimal detection. In contrast, the blue flashers were not utilized for
any measurement purposes.

The spectra of the three types of LEDs used in STRAW-b are illustrated in Fig-
ure 4.3. Notably, the spectra from the white LED have a different shape than
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those from the UV and blue LEDs. This is because white LEDs utilize a blue
LED with multiple layers of light-emitting phosphor in different colors to shift
parts of the light to a greater wavelength, forming white light. As a result, the
spectra exhibit a peak in the blue from the semiconductor, a broader peak in
the yellow to red from the combination of phosphor layers, and a minimum in
between.

4.2 Flasher Activations and Measurement Integra-

tion

The LEDs can be enabled manually or automatically during a measurement rou-
tine that drives the image recording and mini-spectrometer. This routine can
communicate with the neighboring module to enable synchronized LED during
image exposure. In a typical measurement sequence, the camera captures five
pictures every hour with the neighboring module’s LED enabled. In one picture,
all four LEDs light up simultaneously, while in the other four, each LED lights up
individually. More information about the measurement sequence can be found
in Section 3.4. To protect the operating PMTs in the PMT-Spectrometer 1 mod-
ule, only the PMT-Spectrometer 2 module executes this routine, enabling the
LEDs in its neighbor, the LiDAR2. However, on October 28, 2021, at 10:09 UTC,
the module monitoring system of STRAW-b lost connection to the LiDAR 2, and
all subsequent connection attempts have failed. As a result, no images with en-
abled LEDs have been captured since this date, even though PMT-Spectrometer
2 continued to record images. A summary and discussion of module and sensor
malfunctions within the STRAW-b system can be found in Appendix B. Investi-
gations suggest that the malfunctioning modules are booting properly, and the
issue lies specifically with the network connection. Furthermore, the the statistic
of Ocean Networks Canada (ONC) about connector failures is approximate 10 %,
something considered too high for Pacific Ocean Neutrino Experiment (P-ONE).
Consequently, penetrators and connectors are not employed within the P-ONE
system to mitigate this issue.

The flasher system located next to the cameras has only been enabled manually
a few times and has not been integrated into an automated routine yet. Images
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of the enabled flasher system in the PMT-Spectrometer 1 and PMT-Spectrometer
2 can be seen in Figure 5.7. Similarly, the LEDs in LiDAR 1 have not been enabled
due to the permanently enabled PMTs in the PMT-Spectrometer 1. However, the
LEDs have been manually enabled a few times with dim flashes to observe the
PMT responses, and a few times with disabled PMTs and brighter LED flashes
to track the module position in the camera, as shown in Figure 6.1.

In addition to the scientific LEDs that operate within the visible range of the
cameras, certain STRAW-b modules also come equipped with LEDs as part of
an art project known as radioamnion. As described in Section 2.2, the original
objective of the project was to transmit music to the ocean, but the radiamnion

module lost its connection during the deployment also probably due to a con-
nector failure (Appendix B). As a solution, the radioamnion project underwent
modifications where four LEDs were incorporated from two different modules,
serving as a communication medium. Collaborating artists’ compositions are
translated into light pulses through an fast fourier transformation (fft) analysis
of the audio, where each LED represents a specific frequency spectrum. The
flasher’s DAQ system also records the events generated by these LEDs.

4.3 Data Acquisition of the Flasher System

Whenever an LED is activated, the DAQ records the time along with the configu-
ration parameters, regardless of whether the LED event is scheduled or manually
activated. The LED parameter is stored in the module’s general DAQ file with
the data product code SMRD along with other sensor data like temperature and
module orientation. The DAQ system is described in more detail in Section 2.2.3,
while Appendix A provides a summary of the file structure.

A manual LED activation is always possible via the command line interface, and
the automated measurement routine is robust enough to handle any interfer-
ence between manual and automatic use. Indeed he DAQ is setup to check for
each LED activation if there are PMTs enabled in the same or the neighboring
module. If so, it only allows dim flashes to secure the PMTs. If not, also bright
configurations are allowed. Furthermore, every LED has a configurable timer
disabling the LED automatically. This way, the LED cannot be activated for too
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long, threatening to overheat and damage the LED as the heat conduction is
limited.

During the commissioning phase, we have observed a period in which the DAQ
system failed to track all LED events. Initially, the automated routine enabled
all LEDs simultaneously at maximum brightness. At maximum brittleness a sin-
gle LED consumes 1A at ∼3.3V leading to ∼13W for all LEDs. Together with
the consumption of other components in the module, this exceeds the resistance
of the power cable. The voltage drops, leading to a hard shutdown and loss of
unsaved data, including the LED configurations. This type of shutdown has the
potential to cause severe damage to the instrumentation. Consequently, a pro-
cedure was developed to prevent its occurrence during future operations.

While it may seem obvious that exceeding power ratings will result in a power
outage, identifying and troubleshooting such issues remotely can be challeng-
ing. For instance, the log file of the control software may contain abrupt process
crashes due to the critical part not being saved during unexpected shutdowns.
To address this issue, logging more system parameters with the module moni-
toring system, such as the start-up time, can help identify and solve the problem.
It is also worth noting that a hard shutdown introduces the risk of corrupting
the system, which can lead to further complications. In fact, in the case of the
Wavelength-shifting Optical Module (WOM) module, it may not power up after
an unexpected shutdown. Therefore, it is crucial to take measures to prevent
and mitigate unexpected shutdowns to ensure the system’s reliability and in-
tegrity.
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5 Camera Optics

Capturing images is a fundamental aspect of photography and computer vi-
sion. When a camera takes a picture, it projects the 3D scene onto a 2D image
plane, resulting in a loss of depth information. This process is known as a pro-
jective transformation, which maps the direction space onto a two-dimensional
Euclidean space. The camera’s field of view (FoV) is defined by the objective lens
and image sensor. Fish-eye cameras are a type of camera with a wide FoV, and
they can capture a wider scene compared to regular cameras. In this section,
we will provide an overview of the basic principles of camera optics, with a par-
ticular focus on Fish-eye cameras. Since all of Strings for Absorption Length in
Water b (STRAW-b)’s cameras belong to this category

5.1 Basics about Camera Projection

One of the most intuitive ways to represent a camera’s projection is through the
pin-hole projection model. In this model, the 3D scene is projected onto a 2D
image plane through a pin-hole or aperture. The projected image, also known
as the real image, is a representation of the object being captured by the cam-
era. Figure 5.1 illustrates the pin-hole projection of an object 𝐴𝐵 and its corre-
sponding real image 𝐴′𝐵′. In the following, primed variables denote variables in
the projection space. The mapping function for the pin-hole projection is given
by 𝑟 ′ = 𝑓 tan(θ) (5.1)

where 𝑓 is the distance between the principal pin-hole and the image plane, θ
is the angle of incidence of the projected ray to the camera’s optical axis, and
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Figure 5.1: Pin-hole projection of an object 𝐴𝐵. The pin-hole projection is rectilinear as
it preserves the rectilinearity of the projected scene, i.e., straight lines in the scene are
projected as straight lines on the image plane [55, 56].

𝑟 ′ is the projected radial distance from the optical axis. The pin-hole projection
is rectilinear, meaning it preserves the rectilinearity of the projected scene. This
property is ideal in most applications as it ensures that straight lines in the scene
are projected onto straight lines on the image plane [55, 56].

The projection is symmetric around the optical axis, and introducing the rotation
angle φ around the optical axis adds the missing dimension for the 3D scene and
2D image plane. Therefore, φ is not affected by the projection, or mathematicallyφ = φ′. All light arriving at the pin-hole from a direction defined by φ and θ
projects to a point

−→𝑃 ′ (φ, θ) = ⎛⎜⎜⎝𝑥
′𝑦′⎞⎟⎟⎠ = 𝑟 ′ ⎛⎜⎜⎝cos(φ)sin(φ)⎞⎟⎟⎠ = 𝑓 tan(θ) ⎛⎜⎜⎝cos(φ)sin(φ)⎞⎟⎟⎠ (5.2)

on the image plane with the coordinates 𝑥′ and 𝑦′
Inverting the pin-hole projection function gives the mapping from an image
point to its corresponding direction (φ, θ) written as a unit vector

−→𝑃 (−→𝑃 ′ (φ, 𝑟 ′)) = ⎛⎜⎜⎜⎜⎝
𝑥𝑦𝑧
⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
cos(φ) sin(θ)sin(φ) sin(θ)cos(θ)

⎞⎟⎟⎟⎟⎠ with: tan(θ) = 𝑟 ′𝑓 . (5.3)
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Here,
−→𝑃 ′(φ, 𝑟 ′) represents the projected point on the image plane,

−→𝑃 (𝑥, 𝑦, 𝑧) rep-
resents the direction vector in the 3D scene, and 𝑟 ′ = |−→𝑃 ′| is the distance to the
principal point. The maximum dimensions of the image sensor and 𝑓 define the
FoV for the combination of lens and image sensor [55, 56].

The pin-hole projection is a very simplified description of an objective transfor-
mation to illustrate the basic principle. In reality, objective lenses have various
types of distortions that require more advanced descriptions to accurately re-
flect the optics. For example, when characterizing a wide FoV camera using the
pin-hole projection, the size of the projected image becomes huge, increasing
to infinity at a FoV of 180◦ in total or 90◦ from the optical axis. This considera-
tion leads to considerable radial distortion that a fish-eye lens has to introduce,
including its description. Furthermore, chromatic aberration or other effects
should be considered depending on the scope and level of precision required.
[55, 56].

There are several different fish-eye projections. Typically, fish-eye lens manufac-
turers design a lens so that its distortion follows a projection function. Projec-
tions based on spherical geometry with slightly different image representations
are named equidistant, equisolid, orthographic, and stereographic. The ortho-
graphic projection is limited to a maximum angle of 90◦ from the optical axis
and is therefore not commonly used in fish-eye designs. Other methods, such
as polynomial or logarithmic descriptions, have also been proposed. Deviations
from the lens design induced by tolerances in the manufacturing process can be
modeled with polynomial elements where the model is the first-order parame-
ter.[55, 56].

A digital camera captures the 2D image with the pixels of the image sensor. Each
pixel represents an area on the image plane with the center of the area

−→𝑃 ′𝑖𝑗 = ⎛⎜⎜⎝𝑥
′𝑖𝑗𝑦′𝑖𝑗
⎞⎟⎟⎠ = 𝑟 ′𝑖𝑗 ⎛⎜⎜⎝cos(φ𝑖𝑗)sin(φ𝑖𝑗)⎞⎟⎟⎠ (5.4)

and 𝑖𝑗 are the row and column indices of the pixel grid. Usually, sensors have
rectangular pixels all with the same dimensions of Δ𝑥′ by Δ𝑦′, and hence the
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positions are

−→𝑃 ′𝑖𝑗 = ⎛⎜⎜⎝Δ𝑥
′ 00 Δ𝑦′⎞⎟⎟⎠

⎛⎜⎜⎝𝑖𝑗
⎞⎟⎟⎠ − −→𝑐′ = ⎛⎜⎜⎝𝑖 ⋅ Δ𝑥

′𝑗 ⋅ Δ𝑦′⎞⎟⎟⎠ − −→𝑐′ with: 𝑖, 𝑗 ∈ ℕ (5.5)

where
−→𝑐′ is the position of the principal point on the image sensor. For most

sensors, pixels are squared with Δ𝑥′ = Δ𝑦′ and Equation 5.5 can be simplified
accordingly.

To accurately model a camera’s distortion, it is necessary to know the intrinsic
parameters, such as the position of the camera’s principal point

−→𝑐′ . Several tech-
niques can be used to obtain these parameters, but one efficient method involves
using a chessboard pattern printed on a flat surface and capturing multiple pic-
tures from different camera positions. This method allows for the extraction of
both the intrinsic and extrinsic parameters of the camera, including the camera’s
rotation and translation to 3D camera coordinates, without requiring additional
sensors to track the camera’s position and rotation.

There are several approaches to this technique, including methods developed by
Zhang, Tsai, and Selby [57–59]. Additionally, software implementations, such
as OpenCV [48], have been developed to simplify the calibration process, in-
cluding chessboard recognition. OpenCV is a well-known open-source software
implementation that is compatible with multiple languages, including C++ and
Python [48].

5.2 Projection of the IceCube Camera

The level of detail provided about individual components can vary depending on
the lens and camera used. In cases where parameters are missing or further cal-
ibration is necessary, lab measurements can be used, as discussed in Chapter 5.
For the deployed lens type, information from the manufacturer is fundamental
and is summarized in Table 5.1.

During the detector development process, there was limited time available and a
lack of robust readout software for the camera. As a result, a set of pictures with
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5.2. Projection of the IceCube Camera

Table 5.1: Public characteristics of the Arducam M25170H12 lens with M12 mount.
The resulting FoV (field of view) depends on the image sensor dimension and is given
for image sensors with a 1/2.5” and 1/4” diameter. With the 1/3” sensor used in STRAW-b
the FoV is in between. The effective focal length (EFL) is the distance from a principal
plane of a lens to its image plane [60].

FoV for 1/2.5” sensor FoV for 1/4” sensor

Effective focal length diagonal horizontal vertical horizontal1.7mm 180◦ 180◦ 140◦ 118◦
a chessboard pattern, as suggested in the previous section, was not recorded.
However, the principal point, or lens center, in pixel coordinates of the image
sensor was measured for both PMT-Spectrometer cameras. For the combina-
tion of sensor size and lens used, the lens center can be extracted from every
well-exposed image, as the lens exceeds its optical limits for high angles, result-
ing in black areas on the image. The boundary of the black area on the image
forms a circle, and the center of the circle represents the center of the lens. Fig-
ure 5.2 illustrates the method used to determine the principal point for both
modules.

The equisolid projection has been found to ”describe the [lens] distortion nearly
perfectly” by the IceCube Camera team, with only ”slight deviations at the
edges” (G. Roellinghoff, personal communication, April 20, 2022). As shown
in Figure 5.3, the equisolid projection maps the distance between the princi-
pal point and a point on a virtual sphere with radius 𝑓 to the projected distance
from the principal point on the image plane, 𝑟 ′ = |−→𝑃 ′|. The equisolid distortion
function can be expressed as

𝑟 ′ = 2𝑓 sin(θ2) (5.6)

where θ is the incident angle of the projected ray to the optical axis. The inverse
function is given by θ = 2 arcsin( 𝑟 ′2𝑓 ) . (5.7)

As with the pin-hole projection, there is no distortion of 𝜙. Following Equa-
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Figure 5.2: Pictures to extract the principal point, i.e., the lens center, on the image
sensor. With the combination of lens and image sensor, the image sensor covers areas
where the lens is no longer projecting the scene. This results in the black areas on
the images. Fitting a circle to the boundaries yields the center of the lens. Based on
the equisolid projection, Equation 5.9 yields the incident angle θ of a pixel, which the
images illustrate. For comparison, both images show the original orientation and are
not rotated according to the scene orientation.

optical axis

center of projection

principal plane

principal point

image plane𝑓
𝑟

𝑟 ′ = 2𝑓 sin ( θ2)

𝑃

𝑃 ′

θφ

Figure 5.3: Equisolid projection of an point
−→𝑃 to its representation on the image plane−→𝑃 ′. Equisolid projection does not preserve the rectilinearity of the pin-hole projection.

As the name indicates, it is an equal-area projection as the ratio of an incident solid
angle and its resulting area in an image is constant [55, 56].
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𝑟 sin(𝛼)ℎ sin(θ)
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𝑟ℎ
center of
projection θθ.

𝛼

𝛾

𝛼′𝛽

sphere

air
glass

water

𝑑glass
Figure 5.4: Projection of a sphere induced by refraction and where the center of pro-
jection is off-centered in the sphere. Like a module with spherical pressure housing, the
inner volume is air, and the sphere glass. However, the drawing does not include the re-
fraction from glass to water at the outer boundary of the glass sphere for simplification,
and the projection can recursively model it as shown in Section 5.3. Furthermore, the
relations of the dimensions do not represent the module with ℎ =∼63mm, 𝑟 =153.1mm,
and 𝑑glass =12.0mm.

tion 5.2, a ray with an incident direction φ and θ projects to the point on the
image plane −→𝑃 ′ (φ, θ) = 2𝑓 sin(θ2) ⎛⎜⎜⎝cos(φ)sin(φ)⎞⎟⎟⎠ (5.8)

and the pixel coordinates on the image sensor are−→̂𝐼 ′ (φ, θ) = ⎛⎜⎜⎝𝑖𝑗
⎞⎟⎟⎠ = 2𝑓 sin(θ2) ⎛⎜⎜⎝

1Δ𝑥′ 00 1Δ𝑦′
⎞⎟⎟⎠
⎛⎜⎜⎝cos(φ)sin(φ)⎞⎟⎟⎠ + −→𝑐′ (5.9)

where we have used the inverse of Equation 5.5. The pixel indexes 𝑖 and 𝑗 of
the image sensor or photo can be obtained by rounding 𝑖 and 𝑗 to the nearest
integers.

5.3 Projection of the Spherical Module

The previous Section 5.2 provides a simplified projection to model the camera.
This model does not include the refraction induced by the spherical glass pres-
sure housing and the oceanic water, which should be introduced in this sub-

51



5 Camera Optics

section and can be expressed as an additional distortion. The following deriva-
tion presents the spherical refraction analytically in association with the camera
model for simplified adoption in other cases.

The pressure housing made of spherical glass creates two spherical surfaces: one
facing the water outside and the other facing the air inside the module. The ge-
ometry of the refraction at the inner spherical surface is illustrated in Figure 5.4,
and the refraction at the outer spherical surface can be applied recursively, as
explained later in the text. The camera is positioned off-center inside the glass
sphere, at a distance of approximately 63mm from the center. The inner radius
of the glass sphere is 153mm, and its thickness is 12mm. Similar to the model
of the camera in Figure 5.3, the incident angle from the optical axis is denoted
by θ, while the corresponding incident angle after the refraction is denoted by𝛽. The geometry is given by

𝑟 sin(𝛼) = ℎ sin(θ) (5.10)

where 𝛼 is the incident angle of the refraction at the spherical interface. The
refection happens at an angle 𝛾 from the optical axis with 𝛾 = θ − 𝛼. Snell’s law
gives the refracted angle 𝛼′ with

𝑛air sin(𝛼) = 𝑛glass sin(𝛼′) (5.11)

and the refraction indices. Combining 5.11 with 5.10 yields the dependency be-
tween 𝛼′ and θ ℎ sin(θ) = 𝑟 𝑛glass𝑛air sin(𝛼′). (5.12)

Finally, the incident angle of the sphere 𝛽 is

𝛽 = 𝛾 + 𝛼′ = θ − 𝛼 + 𝛼′ (5.13)= θ − sin−1(ℎ𝑟 sin(θ)) + sin−1 ( 𝑛air𝑛glass ℎ𝑟 sin(θ)) . (5.14)

At this point, the second refraction at the outer interface of the sphere has not
yet been integrated. However, the geometry explained so far can be used recur-
sively to introduce it. For clarity, all values in the recursive step are labeled with
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5.3. Projection of the Spherical Module

𝑟 , i.e., θ𝑟 . In the recursive step, the refracted angle 𝛼′ from the inner spherical
refraction equals

𝑟 sin(𝛼′) = ℎ𝑟 sin(θ𝑟) = 𝑟𝑟 sin(𝛼𝑟) = 𝑟𝑟 𝑛water𝑛glass sin(𝛼′𝑟 ) (5.15)

where the dimensions adopt to 𝑟𝑟 = 𝑟+𝑑glass and ℎ𝑟 = 𝑟 . Hence, the final incident
angle after both refractions is given by:

𝛽 = 𝛾 + 𝛾𝑟 + 𝛼′𝑟 (5.16)= θ − 𝛼 + θ𝑟 − 𝛼𝑟 + 𝛼′𝑟 (5.17)= θ − 𝛼 + 𝛼′ − 𝛼𝑟 + 𝛼′𝑟 . (5.18)

This can be written out in full as:

𝛽 = θ − sin−1(ℎ𝑟 sin(θ)) + sin−1( 𝑛air𝑛glass ℎ𝑟 sin(θ))− sin−1( 𝑛air𝑛glass ℎ𝑟 + 𝑑glass sin(θ)) + sin−1( 𝑛air𝑛water ℎ𝑟 + 𝑑glass sin(θ)) (5.19)

without the same ordering of the single terms of Equation 5.18. The refrac-
tion indices are 𝑛air ≈ 1, 𝑛glass ≈ 1.52 for BK-7 glass, and 𝑛water ≈ 1.35 for wave-
length around 500 nm [61]. As mentioned before, the dimensions are given byℎ=∼63mm, 𝑟=153mm, and 𝑑glass=12mm. Hence the individual angles are in the
order 𝛼 ≤ 𝛼′ ≤ 𝛼′𝑟 ≤ 𝛼𝑟 which leads to 𝛽 ≤ θ if 0 ≤ θ ≤ 𝜋. Consequently,
the sphere acts as an optical enlargement for the camera because of its position
in the spherical module. Due to the symmetry, φ is not affected by the glass.
Figure 5.5 shows the different models and the effect of the spherical distortion
with the parameters of the cameras in the PMT-Spectrometer modules.

In this section, 𝛽 and θ were introduced as the incident angles, which measure
against the optical axis outside the sphere and at the camera, respectively. For
simplification, the angles will be referred to as θ from now on as both angles
represent θ typically used in spherical coordinates, and the context will indicate
to which it refers.
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Figure 5.5: A comparison of camera models (a) and the distortion induced by a sphere
(b) as the difference of the inner (θ) and outer (𝛽) incident angle. All curves rest upon
the camera’s parameters within the PMT-Spectrometer modules. The sections 5.1, 5.2,
and 5.3 recap the different camera models, pin-hole, equisolid distortion, and spherical
distortion, respectively. Furthermore, the FoV limits are indicated in (a) for the lens with
740 pixels and when the camera is integrated into the module (see Section 5.4).

5.4 Field of View of the Deployed Camera

The camera’s native FoV or AOV is determined by the focal length of the lens and
image sensor size. A shorter focal length or larger sensor dimensions result in a
wider FoV. The 35 mm equivalent focal length parameter provided for cameras or
lenses specifies the focal length for a 35mm sensor with an equivalent FoV.

However, obstacles can limit the FoV. In the PMT-Spectrometer, the camera’s
placement is surrounded by 12 units of PMTs, lens, and filters, resulting in lim-
ited space.Given the space constraints of the pressure housing, the camera had
to be placed at a location that does not provide the full native FoV. As a result,
the camera’s AOV is restricted to an area around the principal point, with the
holding structure for the 12 PMT units becoming visible at higher inclination an-
gles. Figure 5.6 shows a sectional view including the dimensions of the limited
FoV.

In contrast to the disadvantage of limiting the FoV, the mounting provides di-
mensions to probe the camera’s parameters and if the equisolid projection fits
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(a)

AA

(b) 25 mm

8 mm θ

PMT mounting

lens
A - A

Figure 5.6: Top view (a) and sectional view (b) of the lens position and the photomul-
tiplier tube (PMT) mounting structure. The horizontal line in the top view indicates
the cutting edge of the sectional view. The organ line highlights the edge of the PMT
mounting, θ ≈ 57◦ is an estimate for the maximum angle of view (AOV) in the plan of
the cross-section, as the center of projection (green point) cannot be measured precisely
at the lens.

the lens. The deployed cameras captured images with the two LEDs next to
the camera enabled, revealing the mounting boundary on the image. Figure 5.7
shows the pictures from which the mounting boundary on the image is ex-
tracted. On one side, the boundary is not visible, so three distances from the
principal point yield the mean distance of (441 ± 8) Pixel and (444 ± 8) pixel for
the cameras in the PMT-Spectrometer1 and PMT-Spectrometer2, respectively.
This results in an angle of θ ≈ (55 ± 1)◦ for both modules.

The cross-section of Figure 5.6 represents the same geometry of the measured
pixel distance, which is parallel to the y-axis or x-axis in the image and cross-
ing the principal point. The geometry with 8mm and 25mm results in θ ≈ 57◦
from the optical axis. However, as the principle point of the lens is unknown
with reference to its geometry, the 8mm value is an estimate and not a proper
measurement. These angles based on the images and camera model are in good
agreement with the geometrically calculated angle.

Considering the spherical distortion introduced in Section 5.3, the corresponding
incident angle of the FoV limitation outside the module reduces to θ ≈ (43± 1)◦.
However, this is not more than an assessment of the camera model if it fits in
a specific domain the reality, and measurements in the lab are necessary for an
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Figure 5.7: Pictures of the deployed modules with enabled LEDs to make the boundary
of the PMT mounting structure visible. The LEDs point in the same direction as the
camera. Here they flashed with the maximum brightness to increase the contrast of
the boundary. Both modules clearly show sedimentation. Also, the data cable and steel
cable is visible, and the positions, as marked, are extracted for further analysis. The
position of the neighboring module is extracted from other images where their LEDs
are enabled.

improved model.
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6 Image Processing

Since the cameras started capturing images in late April 2021, the two function-
ing cameras have taken hundreds of thousands of photos each. As of December
2022, the cameras have captured a total of one million images. More informa-
tion on the cameras’ performance and the number of images captured can be
found in Section 3.5.

The cameras are sensitive to two types of light sources: artificial light from LEDs
and bioluminescence emitted by animals or microorganisms. The camera can
capture the light emitted by LEDs mounted in the neighboring module, as well
as the light from the LEDs located next to the camera that make up the flasher
system. Figure 6.1 depicts how both types of LEDs appear in the camera’s view.
For most images, the neighboring modules’ LEDs are disabled, and the flash
system got activated just a few times. Bioluminescence, visible in a few images
each day, is the other light source of interest. In some cases, the remotely op-
erated underwater vehicle (ROV) could also emit artificial light, such as during
an inspection of the string. However, no inspection was carried out while the
cameras were in operation.

The aim of this chapter is to extract pictures with bioluminescence from the
majority of completely dark pictures. Additionally, the technique should be able
to measure the position and other parameters such as brightness, enabling a
higher-level analysis of the recorded bioluminescence. Figure 6.2 provides a col-
lage of bright images selected based on the parametrization. Speed and robust-
ness are also critical parameters for processing the large number of pictures.
Since the pictures have a bit depth of 16 bitpixel , the 1.2 megapixels result in a picture
size of 2.4MB, and the nearly 1 million images recorded so far take up around
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Figure 6.1: Images with enabled LEDs on the neighboring module (left) and the flasher
LEDs next to the camera (right). The camera is located in the PMT-Spectrometer 1
module and its neighboring module, LiDAR 1. The biofouling, data cable, and steel line
are visible with enabled flasher LEDs. The images are cropped to the module field of
view (FoV), and the features on the image are labeled in Figure 5.6.

2.4 TB of storage.

In contrast, extracting pictures with enabled LED does not require special treat-
ment. Every time a LED gets activated, the data acquisition (DAQ) stores the
time together with the configuration parameters, regardless of whether it was
scheduled or manually triggered. Therefore, pictures with enabled LED can be
identified by comparing the image capture times. During commissioning when
all the LED have been simultaneously powered with maximal brightness caused
module shutdowns, leading to data losses in the DAQ, as described in Section 4.3.
The issue was detected and resolved on May 18th, 2021, at around 11:00 UTC.
As a result, the period with inconsistent data needs special treatment or can be
ignored.

6.1 Pixel Noise

A substantial quantity of the images is the individual noise for each pixel. This
noise comes from various sources, including components such as the analog to
digital converter (ADC), DC-to-DC converters, and the pixel itself. Typically,
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Figure 6.2: A collage showcasing a selection of bioluminescent images captured by the
camera in the PMT-Spectrometer 1 module. The images represent a selection of the 1000
brightest pictures recorded by the camera, as determined by the picture parametriza-
tion outlined in this chapter. The brightness of a picture is determined by the sum of
intensities across all pixels deemed active by the algorithm. All images have been re-
duced to the field of view (FOV) specified in Section 5.4.
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Figure 6.3: Intensity distribution of a single pixel under two different camera gain set-
tings. This figure displays the distribution of intensity values recorded from a single
pixel over all images captured until the 31st of October, 2022. The camera gain of 50 dB
includes digital amplification, while the gain of 30 dB represents the maximum ana-
log amplification without digital amplification. Similar distributions can be observed
for other pixels with a shifted mean (𝜇) and varying standard deviation (𝜎). The dis-
tributions follow a Gaussian shape, as indicated by the fit. Additionally, the intensity
threshold of 𝜇 + 3𝜎 is marked, which was used in the cluster detection algorithm de-
scribed in section 6.2.1.

lower operating temperatures decrease noise, and some cameras have active
cooling. However, the cameras in the modules heat up to around ∼10 ◦C when
continuously operating due to the pressure housing and the module’s internal
structure, even though the surrounding Pacific water is ∼3 ◦C.

In the lab, dark noise measurements showed that the noise has a linear depen-
dency on the exposure time and an exponential dependency on the temperature.
A noise model was developed to represent the dark noise 𝑁𝑖 of each pixel 𝑖, given
by the equation: 𝑁𝑖(Δ𝑡, 𝑇 ) = 𝑎0𝑖 + (𝑎1𝑖 + 𝑎2𝑖 ⋅ 𝑒𝑎3𝑖 ⋅𝑇)Δ𝑡. (6.1)

Here, Δ𝑡 is the exposure time, 𝑇 is the sensor temperature, and 𝑎𝑛𝑖 are individual
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parameters for each pixel. As the camera operates at a constant temperature and
with a fixed exposure time, the noise model can be simplified to a single value
for each pixel representing the expected dark noise. Moreover, most images are
completely dark without bioluminescence or artificial light from the LEDs. By
calculating the average value for each pixel across a large number of images, it
is possible to obtain an accurate measurement of the dark noise 𝜇𝑖 of individual
pixels without the need to remove bioluminescence or LED occurrences.

To illustrate the distribution of the noise, Figure 6.3 shows the intensity distri-
bution of one pixel over all the recorded images until October 31, 2022. The
camera operated with a gain of 50 dB initially, which was later changed to 30 dB
to disable digital amplification [45]. The distribution is split into the two dif-
ferent gain periods. With a gain of 50 dB, the dark noise spreads up to 40 % of
the pixel’s intensity range, while with 30 dB, the noise is below 10 %, yielding a
broader range for detecting light.

There is significant variation in the dark noise of pixels throughout the entire
image, and a recurring pattern can be observed in each image, especially when
using a gain of 50 dB. This pattern noise is characterized by an increase towards
the upper and left edges of the image in all cameras used, as depicted in Fig-
ure 6.4 for the camera utilized in the PMT-Spectrometer 1 module. In some
cases, the noise even saturates certain pixels, although these pixels are mainly
located outside the module’s field of view. By contrast, a gain setting of 30 dB
dramatically reduces the pattern noise, and no pixels are saturated solely from
noise. However, some pixels may still be broken and reach maximum intensity,
referred to as hot pixels.

Overall, The misconfiguration of the camera’s digital gain leads to the genera-
tion of significant unwanted noise, resulting in the presence of digital artifacts
in the intensity distribution shown in Figure 6.4. Nonetheless, the dominant
noise component is pattern noise, which can be effectively mitigated by mea-
suring the mean dark noise 𝜇𝑖 and its standard deviation 𝜎𝑖 for each pixel. Since
the majority of recorded images are dark and do not contain measurable light
sources, a sufficiently large set of images can be used to compute 𝜇𝑖 and 𝜎𝑖 with-
out the need to exclude rare photos with light sources beforehand. As depicted
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Figure 6.4: Pattern noise (a) and pixel dark current distributions (b). Pattern noise is the
noise that is independent of illumination conditions. Here it is shown for a 50 dB gain
setting. The image and histogram were captured during dark scenes with an exposure
time of 63 s. For more information on the gain configurations, see Section 3.1.2, which
provides a summary of the gain 50 dB with digital amplification and the reduction to
maximum analog amplification only, resulting in a gain of 30 dB.
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in Figure 6.3, the noise can be modeled with a Gaussian distribution for both
gain settings. Thus, a threshold of 𝐼𝑡ℎ,𝑖 = 𝜇𝑖 + 𝑛𝑡ℎ ⋅ 𝜎𝑖, where 𝑛𝑡ℎ is a constant fac-
tor, can be used to filter out noise-induced intensities with similar probabilities,
irrespective of the gain setting.

6.2 Cluster Detection Algorithm

As previously discussed, one of the major challenges in the realm of image iden-
tification is accurately distinguishing and isolating images that capture even the
slightest amount of light from the vast number of completely dark images in the
Pacific Ocean’s dark environment. When the camera detects a light-emitting ob-
ject, the pixels receiving the light emit more intensity than the background noise
level. As a result, the object appears as a cluster of neighboring pixels with in-
creased intensity. Moreover, the optics’ distortion or non-ideal focus may cause
objects to expand on the image plane, even if the ideal optical transformation
predicts minor expansion. To filter out relevant images, a cluster detection tech-
nique is developed, where a cluster is defined as a group of interconnected pixels
within a certain proximity of each other.

The first step to detect the cluster is to mark active pixels in an image, which are
pixels that measure intensity above a certain threshold. Due to the pixel noise
described in the previous Section 6.1, the intensity threshold is set by a factor𝑛𝑡ℎ using the equation: 𝐼𝑡ℎ,𝑖 = 𝜇𝑖 + 𝑛𝑡ℎ ⋅ 𝜎𝑖. (6.2)

Here, 𝜇𝑖 and 𝜎𝑖 represent the mean noise level and standard deviation of pixel 𝑖,
respectively.

The second step of the cluster detection algorithm involves identifying clusters
of active pixels within the image and assigning each pixel to its corresponding
cluster. A cluster is considered formed when the distance between any two pixels
within it does not exceed a specified maximum distance. Figure 6.5 provides
an illustration of forming clusters, where active pixels must share at least one
corner to be considered part of the same cluster (this corresponds to the later-
introduced neighboring order 1).
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(a)

active pixel

(b)

cluster 1
cluster 2
cluster 3
cluster 4

Figure 6.5: Illustration of the cluster detection algorithm and labeling process. In the
image, pixels with an intensity greater than 𝐼𝑡ℎ,𝑖 are identified as active pixels (a). In the
next step (b)., the clusters of neighboring active pixels are detected and assigned labels
starting from 1. All inactive pixels are assigned as label 0.
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When determining the distance between pixels, it is important to consider the
metric used by the image sensor. Since the image sensor has a Bayer Filter Mo-
saic (Section 3.2), red and blue pixels are separated by at least two pixels, while
green pixels are diagonally adjacent. Consequently, the distance definition be-
tween two pixels should incorporate the color mosaic, allowing a cluster to form
even if it appears in only one color channel. One possible approach to defining
the distance is by considering the nth shell around one pixel in which the other
pixel is located, as depicted in Figure 6.6. These shells are referred to as neighbor-
ing order or simply order in the subsequent discussion. To perform independent
clustering for all colors, an even order is necessary due to the arrangement of
red and blue color filters.

Thus, cluster detection involves two

neighboring
pixel order:

initial
order 1
order 2
order 3

Figure 6.6: Definition of the neighboring
pixel order from the initial centered pixel.

parameters: the intensity threshold
and the cluster distance, represented
by 𝑛𝑡ℎ ⋅ 𝜎 and the neighboring or-
der, respectively. The ideal cluster
detection should be sensitive to
weak signals and robust against pixel
noise. To achieve this, the threshold
and neighboring order must be
set to minimize clusters caused by
noise without excluding faint events.
Lowering the threshold and increasing the neighboring order results in more
clusters from noise.

6.2.1 Simulation-Based Evaluation of Cluster Detection Parame-

ters

The cluster detection method discussed in Section 6.2 relies on two parameters:
the intensity threshold and the neighboring order. Both of these parameters
can have a significant impact on the number of fake clusters that are detected
purely due to noise. However, by default, the cluster detection method is unable
to differentiate between clusters that are the result of an actual signal and those
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Figure 6.7: Impact of different threshold and neighboring order configurations on ran-
dom clustering in the cluster detection algorithm. The results highlight that increasing
the neighboring order and lowering the threshold lead to an increase in the number of
clusters generated by noise. In particular, low thresholds combined with a high neigh-
boring order can result in clusters covering large portions of the image. The crossing
lines in the plot indicate that many smaller clusters have been merged into larger clus-
ters with sizes that surpass the x-axis scale.

that are purely noise-induced. This can lead to the detection of fake clusters
that are merely statistical fluctuations randomly forming a cluster.

To quantify the impact of noise-induced clusters on the detection process, a
Monte Carlo simulation was performed on images that were generated with
Gaussian noise that was independent for each pixel. The simulation results,
depicted in Figure 6.7, show the average expected number of clusters per im-
age for different combinations of the threshold and neighboring order parame-
ters.

The expected number of clusters per image can be modeled using an effective
cluster size 𝑛𝐶 and an adopted Bernoulli distribution [62]. The effective cluster
size describes the number of pixels that are related to one cluster, including
the surrounding inactive pixels. A cluster with only one active pixel requires
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(2𝑔 + 1)2 − 1 inactive pixels, where 𝑔 is the neighboring order. Therefore, the
effective cluster size is 𝑛𝐶 = (2𝑔+1)2, including the one active pixel in the center.
Clusters with 𝑥 active pixels require a shape-related effective cluster size. The
average effective cluster size, including the image resolution 𝑁 , can be expressed
as: 𝑛𝐶(𝑥, 𝑔, 𝑛𝑡ℎ, 𝑁 ) = (2𝑔 + 1)2 ⋅ 𝑥𝑎0(𝑔,𝑛𝑡ℎ,𝑁 ) ⋅ 𝑎1(𝑔, 𝑛𝑡ℎ, 𝑁 ) (6.3)

where 𝑎𝑖(𝑔, 𝑛𝑡ℎ, 𝑁 ) are variables that depend on 𝑛𝑡ℎ, 𝑔 , and 𝑁 . For simplicity, the
variables 𝑥 , 𝑛𝑡ℎ, 𝑔 , and 𝑁 are denoted as 𝑋 in the following. On average, one
image contains 𝐶0(𝑋 ) = 𝑁𝑛𝐶(𝑋 ) (6.4)

clusters, and the number of active clusters 𝐶 is given by

𝐶(𝑋 ) = 𝐶0(𝑋 ) ⋅ 𝑝𝑥 ⋅ (1 − 𝑝)𝑛𝐶(𝑋 )−𝑥 (6.5)= 𝑁𝑛𝐶(𝑋 ) ⋅ 𝑝𝑥 ⋅ (1 − 𝑝)𝑛𝐶(𝑋 )−𝑥 . (6.6)

Here, 𝑝 is a probability that mainly depends on 𝑛𝑡ℎ, but also on the neighboring
order 𝑔 . It is important to note that this description is empirical, and that 𝑎𝑖 and𝑝 must be fitted to the simulation data.

The results of the Monte Carlo simulation demonstrate the expected behavior
of the cluster detection algorithm. Increasing the neighboring order, 𝑔 , leads to
an increase in the number of clusters originating purely from noise since pixels
that exceed the intensity threshold can be separated more and still count as a
single cluster. On the other hand, decreasing the intensity threshold, 𝑛𝑡ℎ, leads
to an increase in the number of clusters due to noise since it is more likely that a
pixel will exceed the threshold, and clusters can form. However, a combination
of a threshold value of 𝑛𝑡ℎ = 3 (corresponding to 3𝜎) and a neighboring order
of 𝑔 = 2 offers a good balance between noise reduction and enhanced cluster
detection for weak signals.

It is important to note that image sensors can also be affected by correlated
noise between pixels, e.g., due to temperature changes, unstable supply voltage,
or fluctuations in the ADCs. These effects can cause higher insensitivity on
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Figure 6.8: Comparison of the average cluster size detected per image for the two cam-
eras and across two gain periods. The clusters were constructed with 𝑛𝑡ℎ = 3 and a
neighboring order of 𝑔 = 2. By nature, cluster detection is prone to detecting clusters
based on noise, particularly for smaller clusters. To account for this effect, the indepen-
dent Gaussian pixels noise component is plotted, as shown in Figure 6.7. It is important
to note that correlated noise can also affect image sensors. Therefore, the noise shown
is an underestimate of the actual noise present.

pixels simultaneously, leading to more clusters. Therefore, the noise contribution
estimated from the Monte Carlo simulation is a lower estimation of the actual
noise component. Since the detailed noise contribution for a specific camera
is unknown, it is not straightforward to model it further. Instead, Figure 6.8
displays the detected clusters for the two different cameras and the two different
gain periods along with the simulated contribution of independent Gaussian
pixel noise.

6.2.2 Processing and Cluster Parametrization

The cluster detection algorithm is applied to all images captured by the three
deployed cameras. For each detected cluster, various parameters are extracted
and stored in a database, enabling further analysis. However, some parameters
depend on the cluster detection algorithm rather than the cluster itself.

To calculate the mean dark noise 𝜇𝑖 and its standard deviation 𝜎𝑖 per pixel, only
a subset of images are used, due to the large number of images and process-
ing requirements. The images are grouped by their capture time into eight-hour
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blocks, with approximately 300 images per block. The block period and the num-
ber of images used to compute 𝜇𝑖 and𝜎𝑖 are stored in the database. This approach
has two benefits compared to computing 𝜇𝑖 and 𝜎𝑖 over all images and then de-
tecting the clusters in a second step. First, it simplifies parallel processing with
multiprocessing, as each image set can be processed independently on a single
process without needing to communicate with other processes. Second, import-
ing a single image DAQ file only once significantly speeds up the algorithm, as
accessing a file from disk can be a major bottleneck.

Another parameter is the image capture time. All other parameters are observ-
ables based on the pixels of the cluster. The number of active pixels, the inte-
grated pixel intensity, and the noise 𝜇𝑖 are calculated for the whole cluster and
for each of the three color channels separately. Three different positions for each
cluster are also measured, where

𝑅pixel = 1𝑛 𝑛∑𝑖=0 𝑟𝑖, (6.7)

is the center of all involved pixels in the cluster,

𝑅int = 1∑𝑛𝑖=0 𝐼𝑖 𝑛∑𝑖=0 𝐼𝑖𝑟𝑖, (6.8)

the center of the pixel intensities weighted by the intensities. 𝑟𝑖 are the pixel
coordinates and 𝐼𝑖 is the pixel’s intensity without the pixel noise 𝜇𝑖 component.
The third position measurement is the center of the minimum rectangle bound-
ing box, which covers all active pixels in a cluster. The rotation and dimensions
of the bounding box are also stored. A full list of parameters and observables
are summarized in Section C.1.

The minimum cluster size is set to 4 and 10 pixels for the two different gain peri-
ods with 30 dB and 50 dB, respectively, to limit the number of detected clusters
and speed up the processing. Smaller clusters are ignored in the following.
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input
layer

4 hidden layers

output
layer

Figure 6.9: Illustration of a fully connected neural network (NN). This figure depicts
a representation of a dense network, commonly referred to as a fully connected model.
Each neuron in one layer is connected to every neuron in the subsequent layer, enabling
information flow from one node to any node in the following layer. Courtesy to Izaak
Neutelings.

6.3 Machine Learning Cluster Classification

The cluster detection technique introduced in Section 6.2 is susceptible to noise-
induced clusters, particularly for small clusters. Thus, it is necessary to separate
the noise. One common approach to classifying data is based on artificial arti-
ficial neural networks (NNs), where the input is connected to multiple hidden
layers before reaching the output nodes, as shown in Figure 6.9. This architec-
ture enables modern NNs to handle up to several million free parameters, which
are adjusted based on a set of training samples. This procedure is referred to as
machine learning (ML), in analogy to the human brain. After training, the NN
can make predictions on new data not seen by the model before. These predic-
tions can be used for classification. Machine learning can be broadly catego-
rized into three methods: supervised, unsupervised, or reinforcement learning.
Supervised learning requires training data where the input-to-output mapping
is known, whereas unsupervised learning identifies underlying patterns and re-
inforcement learning optimizes a reward function to perform the best action in
the next step.
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The classification outlined in this section works with supervised learning, which
rests upon the presents of a bioluminescence hotspot as visible in Figure 6.10.
Furthermore, the holding structure limits the camera’s FoV. Hence, outside the
FoV, clusters must originate from noise with high probability. Consequently, one
area is dominated by bioluminescence, and another is nearly entirely noisy. All
clusters within the two regions are labeled accordingly and used as the training
data for supervised learning so that the model can learn about the features of
the two groups. Since there are many more clusters from noise than biolumi-
nescence, a score matrix is introduced to counterbalance the learning process’s
imbalance. Afterwards, the trained model categorizes all clusters across the en-
tire image.

6.3.1 Hotspots of Clusters

Plotting the cluster pixel center 𝑅pixel from Equation 6.7 shows several features
visible in Figure 6.10. There are two hotspots dominated by noise and another
by bioluminescence.

The noise or pattern noise concentrates in a blob to the lower left part of the im-
age and a band along the upper and right image boundary. Indeed, the blob ap-
pears only in the 50 dB gain period and completely disappears for a gain of 30 dB,
which is illustrated in Figure 6.11. Contrary does the band, which is nearly gone
for 50 dB gain. The band is also visible as a bright area in pictures captured with50 dB gain, e.g., Figure 6.4. The band does not shop up for 50 dB gain because
the pixels are saturated or close to and, therefore, can not exceed the threshold
of the cluster detection.

The cluster concentrates in an area around the data cable and steel line. Those
clusters are most likely from bioluminescence, as organisms emit light after me-
chanical stimulation by touching an obstacle or turbulences around obstacles
induced by water currents. Furthermore, the module’s FoV limit also shows up
as a limit of the bioluminescence hotspot. Noticeably the steel line has more
clusters close by concerning the data cable. A reason could be that the data ca-
ble is not at a fixed position due to the lower tension concerning the steel line.
Therefore the data cable has a smeared signature.
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Figure 6.10: Cluster distribution of the cluster’s pixel center. Noise is mainly located
outside the module’s FoV (blue line) where no light is expected. Only the accumulation
in the lower left enters the module’s FoV. Because the area of the cable is visible and
bioluminescence emits light after mechanical stimulation, clusters in this area are from
bioluminescence with a high probability. All clusters within a 100 pixel are allocated
to the category bioluminescence. Supervised ML trains on the camera noise outside
the module’s FoV (black) and bioluminescence clusters around the cables (green). Af-
terwards, ML can classify clusters across the entire image including clusters that have
not been used for the training, i.e. clusters which are inside the FoV but further away
from the cable (blue). Figure C.1 shows the cluster captured by the camera in the PMT-
Spectrometer 2 module.

Figure 6.10 shows the cluster distribution exemplary for the camera in the PMT-

Spectrometer 1 module. Fortunately, the other camera in the PMT-Spectrometer

2 module represents the same characteristics, and only the data cable and steel
line position is rotated.

6.3.2 Initial Classification for the Training

Supervised learning needs a data set where the output is known to fit its model.
Hence all clusters in the training data need a label to which group they belong,
i.e., noise or bioluminescence. As shown in the previous Section 6.3.1 there is an

72



6.3. Machine Learning Cluster Classification

0 200 400 600 800
x [pixel]

0
200
400
600
800

1000
1200

y
[p

ix
el

]

gain 50dB

Fo
Vcable

0 200 400 600 800
x [pixel]

gain 30dB

Fo
Vcable

100

101

cl
us

te
r

co
un

t

.

Figure 6.11: Cluster distribution respects the two different gain settings in the camera.
Clusters are from the PMT-Spectrometer 1 module’s camera, and the pixel center of
each cluster is plotted. With a gain of 50 dB, the noise concentrates in the lower left part
of the image. In contrast, a gain of 30 dB has the noise along the upper and left image
boundary. The reason for the two different noise patterns refer to the text

area in the image dominated by bioluminescence. Therefore, all clusters within
a certain distance to the cables are allocated as bioluminescence. The maximum
distance is set to 100 pixels by visual inspection of Figure 6.10 to separate from
the pattern noise in the lower left part of the image. Assigning clusters to the
noise category utilizes the camera’s FoV limitation from the PMT holding struc-
ture. In this area, clusters predominantly originate from noise with a minor
component of reflections. As the PMT holding structure is made out of black
plastic and bioluminescence is not very bright, the chance of reflections is low.
Therefore, all clusters outside the camera’s FoV are assigned to be noise. Clusters
that do not belong to one of the two groups are not used for the training.

This initial classification is more probabilistic as specific. For example, an origi-
nal noise cluster randomly can appear close to the cable and, therefore, is mis-
labeled as bioluminescence. Also, the mentioned reflections at the PMT hold-
ing structure could create clusters with a similar signature to bioluminescence
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but are filtered as noise due to the cluster position. However, as ML is also a
probabilistic method, the idea is that the model should learn on the majority
of correctly labeled clusters without getting disturbed by the minority of falsely
labeled ones.

6.3.3 Feature Selection and Normalization

Feature selection and normalization are two essential techniques in the field
of ML to reduce the computational cost, especially the training time, and to
improve the model’s performance and robustness.

Feature normalization is to scale the observables to have similar ranges and
distributions. The goal of feature normalization is to ensure that the features
are on the same scale so that the model is not affected by the different units
of measurement of the features. This is particularly important when using al-
gorithms sensitive to the input data’s scale, such as distance-based algorithms
and gradient descent. Common normalization techniques include standardiza-
tion, which scales the features to have a mean of zero and a standard deviation
of one, and min-max normalization, which scales the features to a fixed range,
such as 0-1. However, most of the ML models apply normalization measures
by trainable parameters, and in some cases, normalization even degrades the
performance.

For this classification task, the square root is first taken for all charge and noise
and pixel observables to compensate for the area they describe. For example, a
cluster with doubled radius has approximately four times the pixels. Further-
more, the charge and noise increase by a factor of four as they refer to the sum
of pixel parameters. Second, the charge parameters are further logarithmized as
they are an intensity that suffers from absorption by the water. And finally, the
features are scaled to have a mean of zero and a standard deviation of one.

On the other hand, feature selection is the process of selecting a subset of
the most informative and relevant observables. Feature selection is important
because it can improve a model’s performance by reducing the dataset’s
dimensionality and removing noise and irrelevant features. This can lead
to a more straightforward and interpretable model and faster training and
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prediction times.
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Figure 6.12: Mutual information (MI) of
the all observables. Blue are the features
used for the MI to build its model. Gray are
all features excluded because of an intrin-
sic position dependency, and green are ex-
cluded because of to less MI.

There are several methods for feature
selection, including filter methods,
which use a criterion to evaluate the
importance of each feature, and wrap-
per methods, which use the model’s
performance on a subset of features as
the criterion. In a classification prob-
lem, feature selection is essential to
identify the most relevant features for
the classification problem, which can
improve the model’s accuracy. Also, it
can help to eliminate noise and irrele-
vant features.

The dependency between the features
and the discrete target class is illus-
trated in Figure 6.12 using the con-
cept of mutual information (MI). MI
is a non-negative value that quanti-
fies the relationship between two vari-
ables. A value of zero indicates in-
dependence, while higher values in-
dicate stronger dependency. In this
case, the function employed utilizes
non-parametric techniques that esti-
mate entropy from k-nearest neigh-
bors distances [63, 64].

Obviously, all position-related param-
eters show the highest MI in Fig-
ure 6.12 because it is how the classes
are generated. Remarkable is also

that the noise parameters show a high relation. A reason for it is that the clus-
ter’s noise is dominated by pattern noise which couples with the position of the
cluster. The same effect appears in the charge features because the charge is
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the sum of all pixels, which exceeds the noise level by 3 𝜎. Moreover, the 𝜎 de-
pends again on the pattern noise yielding a hint to the position. Therefore, those
features which are somehow coupled to the place on the image are not used for
training as it could lead to wrong estimates. The angle feature is close to zero MI
and is excluded, too. All remaining parameters are not connected to the position
and show at least some relation also if it is weak. Therefore those are used for
the classification.

To verify the selection, a decision tree classifier is used. Decision tree classifiers
are another feature selection technique. It yields a comparable selection which
is shown in Figure C.2.

6.3.4 Unbalanced Data and the Score Matrix

Unbalanced data refers to a situation where the distribution of classes in the
training data is uneven, with some classes having many more examples than
others [65]. For example, in the case of the image clusters, the initial class ra-
tio, bioluminescence to noise, is below 8%. It is called initial classes because the
class assignment is based on the cluster location and therefore is not perfectly
separated, i.e., there is noise in the signal class as outlined in Section 6.3.2. The
following describes the measures to mitigate this problem of unbalanced data for
the simplified case of two existing classes where true negative and true positive

are correct predictions of the minority and majority class, respectively.

Training a ML model with unbalanced data can make the model biased towards
the more prevalent class, resulting in poor performance in the underrepresented
classes. One way to address this issue is to use techniques such as oversam-
pling the minority class or undersampling the majority class to balance the data
distribution. Another approach is to use cost-sensitive learning, where different
misclassification costs are assigned to other classes, to adjust for the imbalance
in the data [65].

Balancing the classes helps to equalize the classification performance of both
classes. Compared to a model trained without measures against unbalanced
data, the class balancing decrease true negative and false negative while it in-
crease true positive and false positive. As a result, balancing the classes raise the
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Figure 6.13: Impact of measures handling imbalanced data using the same deep neu-
ral network (DNN) architecture. The baseline model does not incorporate any special
treatment for the imbalanced data, while the balanced model utilizes class weights to
address the imbalance. The score matrix extension of the balanced model results in a
decreased false positive (FP) score. Besides, the balanced model, as well as the model
with the score matrix, needed fewer training iterations to find their optimum in less
time.

recall 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓 𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (6.9)

while the precision

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓 𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (6.10)

remains relatively unchanged. This effect can be seen in Figure 6.13 during the
training process using the model and optimization techniques described in Sec-
tion 6.3.5. Nevertheless, it is important to note that this effect may not always
be the case, as the model has the ability to adjust its parameters to address the
imbalance.

Furthermore, these metrics must be evaluated in the context of each individ-
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ual problem, as one type of error may be prioritized over the other. For example,
clusters outside the FoV are considered noise, so the model should predict a very
low number of false positive. On the other hand, some clusters around the cable
are incorrectly assigned to the bioluminescence class and should be noise instead.
Hence, the model should generate some false negatives. Therefore, incorporat-
ing cost-sensitive learning is required to weigh misclassifications differently. A
simple implementation is scaling the loss function 𝐿 with a parameter 𝑙𝑠, which
accounts for different scores. The scaled loss function is

�̂� = 𝐿 ⋅ 𝑙𝑠 (6.11)

where 𝑙𝑠 = 1 if all predictions 𝑝 match the truth 𝑐 and increase with more misclas-
sifications. Instead of implementing the different losses directly in the loss func-
tion, this approach has the advantage that the loss function could be changed
easily. The scaling parameter 𝑙𝑠 is defined as follows where a scoring matrix is
used 𝑆 = ⎛⎜⎜⎝𝑠TN 𝑠FN𝑠FP 𝑠TP⎞⎟⎟⎠ (6.12)

rather than a loss matrix. The score matrix allows different scores 𝑠 for the dif-
ferent scenarios, true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). A score for a correct prediction should be higher or equal to
its incorrect counterpart, hence 𝑠TN ≥ 𝑠FP and 𝑠TP ≥ 𝑠TP. The score of a prediction𝑝𝑖 for the sample 𝑖 is 𝑠𝑖 = ⟨𝑝𝑖|𝑆|𝑐𝑖⟩ (6.13)

where 𝑐𝑖 is the true value and both, 𝑐𝑖 and 𝑝𝑖, are ( 10 ) or ( 01 ) for indicating negative

or positive, respectively. The scaling parameter 𝑙𝑠 is the inverse mean of all scores
with 𝑙𝑠 = 𝑁∑𝑁𝑖 ⟨𝑝𝑖|𝑆|𝑐𝑖⟩ (6.14)

where 𝑁 is the total number of samples in the training dataset. Normalizing 𝑙𝑠
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to 1 equals

1 = ∑𝑁𝑖 ⟨𝑐𝑖|𝑆|𝑐𝑖⟩𝑁 (6.15)= 𝑛𝑁 𝑠TN + 𝑝𝑁 𝑠TP. (6.16)

with 𝑛 the number of negative samples, 𝑝 the number of positive and𝑁 = 𝑛+𝑝. To
make both classes contribute equally to the score, the following must hold:𝑛𝑁 𝑠TN = 𝑝𝑁 𝑠TP = 12𝑁 (6.17)

which yields 𝑠TN = 𝑁2𝑛 , 𝑠TP = 𝑁2𝑝 . (6.18)

The score matrix can be simplified to only two free parameters, 𝑎 and 𝑏, by
defining 𝑠TN = 𝑏𝑠FP and 𝑠TP = 𝑎𝑠TP, where 𝑎 and 𝑏 are in the range of (0, 1]
and determine the lower score assigned for a false negative and a false positive,
respectively. The resulting matrix is given by:

𝑆 = 𝑁 ( 12𝑛 𝑎2𝑝 𝑏2𝑛 12𝑝) . (6.19)

This approach automatically accounts for the class imbalance in the training
sample and provides the ability to tune the scores for different errors.

As it is known that a cluster outside the FoV must originate from noise, the
score of a false positive prediction 𝑠FP should be minimal or 𝑏 << 1, e.g., 𝑏 = 10−6.
False negative predictions are expected and should not be treated specially in the
score matrix, leading to 𝑎 = 1. Hence the score matrix for this classification task
is 𝑆 = 𝑁 ⎛⎜⎜⎝

12𝑛 12𝑝10−62𝑛 12𝑝
⎞⎟⎟⎠ . (6.20)

The impact of measures handling imbalanced data on the Figure 6.13 summarise
which shows the precission and recall metric for no balancing (baseline), balanc-
ing the classes and a score matrix which is introduced in the following
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6.3.5 Building, Training and Optimizing the Model

Building, training, and optimizing a NN model involves several steps. The first
step is to define the model’s architecture, which includes the number of lay-
ers, the type of layers, the number of neurons in each layer, and the activation
functions. Then, during training, the model’s performance is monitored using
accuracy, precision, recall, and loss metrics. Finally, the model’s performance
is evaluated on the test data to determine its generalization ability. The pro-
cess of building, training, and optimizing is iterative and requires careful exper-
imentation and tuning to achieve the best results. The following describes the
experience of training models for this specific classification task.

The NN models that have been tested in this study all employ a fully connected
architecture, also known as a dense network. This deep learning architecture
connects every neuron in one layer to all the neurons in the subsequent layer.
As a result, information can flow freely between all nodes, allowing the NN to
optimize the parameter connections that perform the best.

To prevent overfitting, dropout layers were added after each fully connected
layer. Overfitting occurs when a model becomes too specialized to the train-
ing data and fails to generalize well to new, unseen data. Dropout is a regu-
larization technique that helps mitigate overfitting by randomly dropping out
neurons during training. The dropout rate was determined to be optimal when
set between 0.2 and 0.5.

Another common approach to avoiding overfitting is early stopping, which in-
volves monitoring the model’s performance on the validation dataset and stop-
ping the training process if the performance breaks improving or begins to de-
teriorate [66, 67].

The model optimization was performed using cross entropy as the loss function
with the score matrix extension explained in Section 6.3.4. Cross entropy is a
standard loss function used in classification problems requiring the model to
predict class labels. It measures the dissimilarity between the predicted and tar-
get probability distributions, helping the model learn to optimize its parameters
and reduce the error between the predicted and true outputs [68].
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Figure 6.14: Cluster location distribution demonstrating the effectiveness of ML clas-
sification for clusters with a size ≥5 pixel. Absolute cluster count is plotted instead of
density to highlight the minimum number of clusters in certain areas. Plots in the same
color show the same data, where the lower row has marked FoV and cable areas orig-
inate from Figure 5.7. Predicted bioluminescence nearly perfectly appears only in the
FoV whereas there is a minor increase of the density at the cable in the predicted noise
(false negative). NN models trained with a different minimum cluster’s pixel size of 4
and 6 pixels are shown in Figure C.4 and Figure C.5. This plot shows clusters from the
camera in the PMT-Spectrometer 1 module and Figure C.3 from the camera in the PMT-
Spectrometer 2 module.
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Figure 6.15: Probability density function (PDF)s of the cluster locations depicting the
performance of the ML classification. The PDFs are generated for all clusters and their
individual class components. The clusters are classified as ”bioluminescence” (positive)
or ”noise” (negative) based on their proximity to the cable or their location within the
FoV. Both areas are marked in the distributions, demonstrating the effectiveness of the
NN in separating the two classes without prior knowledge of their exact positions.
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Figure 6.16: The NN clas-
sifier architecture.

To evaluate the performance of a model, a commonly
used approach is to utilize a dataset that is separate
from the training data and whose true classifications
are known. However, in this particular case, such
a dataset is not available, and the bioluminescence
cluster samples contain a certain degree of noise.
Nonetheless, it is possible to assess the model’s per-
formance by examining the position of the clusters
as classified by the NN, as shown in Figure 6.14. This
approach allows for a qualitative evaluation of the
model’s performance, even in the absence of a quan-
titative benchmark dataset.

As previously discussed, bioluminescence clusters
should not be predicted outside the FoV, and the den-
sity of noise clusters should not show an increase
concerning the cable’s position. Since both targets
cannot be achieved simultaneously, a model selec-
tion involves making a trade-off between these two
features. Figure 6.15 shows a reasonable classifica-
tion also for the smallest recorded clusters of 4 pixels.
However, the performance on 4 pixels is by at least
one magnitude worth on false positive as for greater
clusters. Therefore, the cluster size limit is set to 5 pixels ignoring smaller clus-
ters. The NN is trained again because it improves the performance when the
target classes are known more precisely, which is the case for bigger clusters.
Figure C.6 illustrates the improved classification with the retrained NN. Train-
ing the NN on all cluster sizes or applying a threshold of 4 and 6 pixels results
in Figure C.4 and Figure C.5, respectively.

The results of testing various NN models revealed that a robust architecture
capable of delivering reliable results on datasets captured by two cameras and
under two different gain settings necessitates using at least three hidden layers.
Further analysis uncovered that the last hidden layer should have between 5 to
8 nodes, while the middle layer should have a node count of more than double
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the number of nodes in the input layer. Enhancing the size of four hidden layers
and increasing the second hidden layer, even more, was also found to contribute
to a modest increase in the stability of the NN model. The architecture utilized
can be viewed in Figure 6.16.

6.4 Conclusion

The chapter presents a method for detecting bioluminescence in dark scenes
through deterministic cluster detection and a NN classifier. First, all clusters
are extracted from an image together with a set of observables. The cluster de-
tection mechanism is based on a noise threshold and the maximum distance
between pixels to be considered a cluster. Known areas in the images where
clusters are more likely to originate from either noise (outside the camera’s FoV)
or bioluminescence (around the cables) are used as a training sample for super-
vised learning. Subsequently, position-related observables are removed from the
training sample to train an unbiased NN. After training, the NN can classify all
detected clusters and filter out clusters originating from bioluminescence. De-
spite the initial class assignment for the training sample not being 100 % accu-
rate, the filtering performance is remarkable, even for small clusters with as few
as 5 pixels.

One of the advantages of this approach is the ability of the NN to handle differ-
ent camera gain settings and corresponding changes in noise without splitting
the data beforehand. Additionally, the method does not need extensive comput-
ing resources or long computational time. Detecting all clusters on an image, in-
cluding extracting all additional observables, takes about 1 second per image on
a single CPU core. Furthermore, the small size of the neural network architec-
ture also results in a fast training time, taking less than a minute on a standard
CPU for about 5 million detected clusters, which allows for quick tuning of the
parameters.

Overall, combining cluster detection and the NN classifier provides an effective
mechanism for detecting bioluminescence in dark scenes, which could also be
transferred to similar applications.
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7 Exploring the Ocean Environment
Through Camera Analysis

In this chapter, the environmental analyses performed on the images cap-
tured by the cameras integrated into Strings for Absorption Length in Water
b (STRAW-b) are discussed. The aim is to gain insights into the mooring
movement (Section 7.1) and measure the extent of biofouling (Section 7.2). The
analyses presented in this chapter utilize the neural network (NN) aided cluster
detection technique, which is discussed in detail in Chapter 6.

7.1 Tracking the Mooring Movement in Images

Mooring lines, like STRAW-b, operate in a constantly changing oceanic environ-
ment, where water currents can vary in both speed and direction. Due to this,
mooring lines move with the water flow, while the anchor remains the only fixed
point.However, the initial classification for the NN presented in Section 6.3.2 as-
sumed a static cable and neighboring module positions in the images. Indeed,
the cable and module positions were determined from two images with enabled
flashers, and all clusters near the cable and module were assigned as biolumi-
nescence targets for the NN classifier. Tracking the actual module positions can
provide insight into the validity of the assumption that relative positions be-
tween modules remain static or if a non-static model could improve the initial
classification.

Over a span of six months, images were captured by the camera located in the
PMT-Spectrometer 2 module with enabled LEDs in the neighboring module (Li-
DAR 2). Specifically, once per hour, a set of images with varying LED config-
urations were taken by the camera. Further details regarding the LED flasher
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Figure 7.1: Timeline of images with enabled LED in the neighboring module. The mea-
surement stopped end of 2021 because the connection to the module with the LED was
lost.

system and the measurement integration can be found in Chapter 4.

Among the various LED configurations used for imaging, the images captured
by the white downwards-facing LED were chosen due to their brighter appear-
ance caused by the attenuation spectrum. This improved the stability of the
module tracking. Moreover, the symmetrical shape of the downwards-facing
LED and its direct alignment with the upwards-facing camera increased the im-
age brightness and facilitated the extraction of the LED position. The selection
of the desired LED configuration was based on the recorded timestamps, as the
data acquisition (DAQ) system registered the activation of each LED with its
corresponding configuration.

After filtering the images, the detection of the cluster introduced in Section 6.2
provided a set of parameters, including different location calculations listed in
Table C.3. The LED emission cone projects as a symmetrical cone in the image,
and the cone’s center represents the module’s location. Among the different
position definitions, the one that considers the pixel intensity (Equation 6.8)
provides a robust tracking of the symmetrical cone’s center, where the intensity
is maximized in the center.

Despite the hourly image capture schedule, the number of successful measure-
ments is lower due to several factors, including camera malfunctions, inter-
module communication issues or delays, and the DAQ system’s ongoing de-
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Figure 7.2: Tracking the movement of the neighboring module. The origin (0, 0) is
the initial module position based on a single image. The x and y coordinate in meters
calculate from the known distance of 24m, and the camera projection is introduced
in Chapter 5. The two plots show two different LED configurations, where the left is
less bright but with a longer emission time than the right. The plots signifies that the
modules are aligned synchronously within the currents, because no rotation with the
doubled distance light-emitting diode (LED) to cable of ∼0.6m (2⋅0.295m) is visible.

velopment during the study period. Additionally, biofouling affected the light’s
path and disrupted the symmetry of the light cone, leading to less accurate po-
sition calculations. Figure 7.1 illustrates the image success rate after applying
the filters as mentioned earlier.

The cluster with the shortest distance to the initial module position for each
image was selected. The pixel coordinates were then projected onto cartesian
coordinates using the 24m distance between the modules and the camera pro-
jection discussed in Chapter 5. This resulted in a heat map of all tracked po-
sitions, as shown in Figure 7.2, with most positions within 0.2m radius. The
left plot in Figure 7.2 exhibits a clear eigenvector of movement following the
plot’s diagonal, indicating that the modules are aligned synchronously within
the currents, despite the current direction changing every 6 h. Additionally, only
minimal induced rotation along the steel cable where modules are mounted can
be observed.

89



7 Exploring the Ocean Environment Through Camera Analysis

Figure 7.3: Collage of the STRAW inspection from September 2020 operated by Ocean
Networks Canada (ONC) [27]. Biofouling appears at the modules and along the cables.

While the assumption that relative module positions remain almost static is
valid, a deep-sea neutrino detector requires absolute positioning of all modules
with high precision, within a few centimeters, over a distance of more than 1 km.
Until absolute location measurements are available, the data presented in this
section can serve as a basis for crosschecking hydrodynamic detector simula-
tions in combination with the actual currents at the site.

7.2 Biofouling on the Detector

Objects in the ocean undergo three different processes where their surfaces be-
come covered by various substances: marine snow, sedimentation, and biofoul-
ing (MSB). Over time, the layer of accumulated material on these objects can
attenuate light in detectors, becoming increasingly dense and affecting their
performance. Further investigation is required, but an inspection dive revealed
that biofouling contributes the most to detector contamination, as shown in Fig-
ure 7.3. The inspection also suggests that contamination increases towards the
sea floor. This section first summarizes the underlying process of biofouling be-
fore it outlines an indirect measurement of the contamination with the camera.
Then, for future detector arrays, a possible direct measurement is presented and
measures against biofouling, called anti-fouling, are summarized.
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7.2.1 Underlying process of Biofouling

Biofouling begins with pioneer bacteria gradually covering the surface with a
biofilm. Once established, other organisms build up on it, strengthening the
adhesion, which makes it difficult to remove it again. Anywhere where water is
present, biofouling can occur and degrade the device’s primary purpose to which
the surface belongs. For example, on marine vessels, the accumulation increases
both the hydrodynamic volume of a vessel and the hydrodynamic friction, lead-
ing to increased drag which can increase the fuel consumption by up to 40% [69].
Although, it is not an aspect of a neutrino telescope; fouling on ships can trans-
port and introduce non-indigenous, invasive species, which pose a significant
risk in various facets [70]. This subsection first covers a technique to measure
biofouling before it summarizes different options to prevent biofouling within
the scope of an application in a deep sea neutrino telescope.

7.2.2 Indirect Measurement of Biofouling with the Camera

The brightness levels of the clusters are considered to measure the effect of ma-
rine snow, sedimentation, and bio-fouling (MSB) with the camera. The cluster
brightness is defined as 𝑏𝑐 = 1𝑁 𝑁∑𝑖=0 𝑝𝑖 − 𝜇𝑖𝜎𝑖 (7.1)

over all active pixels 𝑖 with its individual pixel noise level 𝜇𝑖 and the noise stan-
dard deviation 𝜎𝑖, to compensate for the effects of fluctuations in the electronic
noise baseline. Figure 7.4 shows the mean brightness of all recorded images in
periods of 27 days. Selecting 27 days over a monthly period reduces interference
effects. Because bioluminescence is strongly related to the water current, which
is again related to the tides that are induced by the moon. Therefore, the moon
period of 27 days appears in the currents and the bioluminescence.

The errors displayed represent the statistical error, including the cluster detec-
tion error. When multiple pixels close to the threshold are present, it can cause
a significant error in the cluster brightness. A linear fit analysis reveals an an-
nual loss of 34.0%±24.5% and 34.3%±19.9% for the PMT-Spectrometer 1 and 2
cameras, respectively. Remarkably, both cameras show a similar loss over time
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Figure 7.4: Cluster brightness loss in the images. The data show the average bright-
ness calculated in the cluster detection (Equation 7.1) for periods of 27 days to match
the moon period, which strongly influences the currents and again influences biolumi-
nescence. The current percentiles are plotted in the lower plot to avoid being biased by
current changes.

despite being separated by a depth of 260m. In order to crosscheck if the cur-
rents could cause the loss, the current data is also plotted in Figure 7.3. However,
the average currents remain constant during the observed period, indicating that
the currents are unlikely to be the bias causing the loss in average brightness. Al-
though the measurements indicate a loss, the error margins are high, including
only a minimal loss of a few percent per year.

7.2.3 A Possible Direct Measurement of Biofouling

Location and material have a strong impact on the speed of biofouling. Predic-
tions on the speed are difficult and show to be inaccurate, leading to measure
the stemming in situ where information about the contamination is required.
A technique to monitor the biofilms stemming base on the stimulated fluores-
cence of microorganisms constituting the biofilm. More precisely, it predicates
on the amino acid tryptophan, an organic molecule that dominates the intrin-
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Figure 7.5: Tryptophan absorption and intrinsic fluorescence spectrum. Stimulated
with a UVC-LED, the amino acid tryptophan fluoresces in the near-UV. A light de-
tector such as a spectrometer can measure the fluorescence raveling the presence or
even measuring the degree of contamination of biofouling [71, 72]. In addition, the plot
shows the absorption of BK7 glass for different thicknesses and the DNA damage spec-
trum [54, 61, 73].

sic fluorescence when present. After stimulating amino acid tryptophan with
ultraviolet (UV) light at 280 nm, it emits UV light between 308 nm and 350 nm
depending on the polarity of the direct surrounding [71, 72].

The absorption spectra of the BK7 glass used for the pressure housings cut off
wavelengths smaller 280 nm, impeding the measurement. Typically, the spheri-
cal pressure housings have a thickness around 10mm. For reference, STRAW-b
has spheres with 12mm. As indicated in Figure 7.5, reducing the thickness does
not help too much to increase the tryptophan stimulation. BK7 glass is common
practice for deep sea pressure housings because of the reduced cost compared
to quartz glass which therefore is transparent in UV up to 170 nm. However,
stimulating tryptophan should be possible with BK7 glass, and the tryptophan
fluorescence is well below the cutoff. Figure 7.5 shows both the absorption and
fluorescence spectrum of tryptophan together with the transmittance spectra of
the BK7 glass for different thicknesses [71, 72].

Besides measuring the contamination, UV light can prevent the biofilm from
growing in an early stage by damaging the deoxyribonucleic acid (DNA) of the
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microorganisms. Without biofilm, bigger organisms can not attach to the glass
preventing biofouling if the system operates regularly. The DNA damaging spec-
trum proposed by the network for detection of stratospheric change (NDSC)
steering committee is

𝐴DNA = ⎧⎪⎪⎨⎪⎪⎩
1𝑎0 exp [𝑎1 ( 11+exp[(𝜆−𝜆0)/𝑎2] − 1)] for 𝜆 ≤ 370𝑛𝑚0 for 𝜆 > 370𝑛𝑚 (7.2)

with the parameters 𝑎0=0.0326, 𝑎1=13.82, 𝑎2=9 and 𝜆0=310 [73, 74]. Figure 7.5
shows the spectrum normalized to 250 nm. To assess the biological effect 𝐸bio, the
radiation spectrum 𝐸(𝜆) of the light source convolves with the DNA damaging
spectrum to 𝐸bio = ∫𝜆 𝐸(𝜆) ⋅ 𝐴DNA(𝜆) 𝑑𝜆. (7.3)

With respect to the tryptophan absorption, the DNA damaging spectrum rises
at an even lower wavelength. This allows measuring the tryptophan stemming
non-destructively for the microorganisms [71]. On the other side, damaging
spectrum rises below the BK7 glass cutoff, and a DNA damaging light source
should not be encapsulated with BK7 glass. Contrary, a BK7 pressure housing
has the advantage of effectively shielding its interior from external UV radiation,
such as protecting sensible PMTs. As the tryptophan fluorescence decays within
some nano-seconds, there should be no direct afterglow effect which compro-
mise the photomultiplier tubes (PMTs) [75].

7.2.4 Antifouling

More generically, processes to prevent biofouling from forming summarize un-
der the name anti-fouling and group in toxic or non-toxic coatings and active
systems by injecting energy like thermal, acoustic, or electromagnetic treat-
ments.

Toxic coatings induced harmful environmental effects on marine organisms, and
since 2008 a convention of the international maritime community (IMO) prohibit
the use of harmful organotin compounds [76]. Non-toxic coatings prevent the
attachments of microorganisms with hydrophobic or oppositional hydrophilic
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surfaces. Hydrophobic base on low surface energy and therefore results in low
friction especially preventing the attachment of more significant microorgan-
isms. In contrast, hydrophilic coatings have, by definition, a strong affinity for
water and increase the energetic penalty of removing water for proteins and mi-
croorganisms to attach [77]. Another option is building up a nanoscale layer on
the surface with minimal attachment points similar to the skin of sharks and
dolphins.

Active systems can also treat fouling as the previously mentioned DNA destruc-
tion with UV light. One option is to heat up the surface to not extreme temper-
atures of 40 ◦C for some minutes with the drawback that heating needs much
energy [78]. An alternative with lower energy consumption is ultrasonic vibra-
tions dissolving the microorganisms from the surface and preventing biofilm
creation.

Concluding the final assessment, maritime engineering developed several meth-
ods to prevent biofouling. For a neutrino, telescope biofouling can reduce the
photoelectric sensitive area resulting in lower detector sensitivity and statistics.
Furthermore, the telescope should operate for years or even decades to generate
enough statistics for sensitive studies. Therefore, a combination of different pas-
sive and active systems is also promising because an in-situ evaluation is limited
to shorter timescales. An outstanding position has UV light as it prevents bio-
fouling and can measure the biofilm contamination within one system.

95



7 Exploring the Ocean Environment Through Camera Analysis

96



8 Bioluminescence at Cascadia
Basin

When the wings [of a firefly] were tied together,

abandoning their constant movement, the light faded.

In the same way, the glitter of the sea, of fish and

putrid wood depends on motion.

Domenico Bottoni, 1692 [79]

This chapter aims to provide a deeper understanding of bioluminescence using
the images captured by the cameras in Strings for Absorption Length in Wa-
ter b (STRAW-b). The neural network (NN) aided cluster detection technique
outlined in Chapter 6 is utilized to track the bioluminescent features in the im-
ages and analyze their properties. Specifically, this chapter covers the periodic
variations in the bioluminescence baseline rates, the spatial distribution of bio-
luminescence emissions in the images, the population of the emitting organisms,
and the processes that trigger bioluminescence and relate the emission rate to
the current speed and concentration of bioluminescent organisms.

8.1 Periodic Variations in Bioluminescence Rates

This section explores the variability of bioluminescence rates over time at the fu-
ture site of Pacific Ocean Neutrino Experiment (P-ONE). It aims to address two
main questions: whether bioluminescence occurrence is affected by seasonal
changes and whether it varies with depth. To answer these questions, Figure 8.1
presents the bioluminescence image and cluster rates over a period of 558 days,
from 21.06.2021 to 31.12.2022. Although the cameras have been recording images
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Figure 8.1: Rates of images and clusters showing bioluminescence normalized to the
total number of recorded images. The lower plot displays the mean current velocity
measured by a current meter located 2.1 km northwest of the STRAW-b position. The
data is binned in three-day intervals for smoothing, and the rates are normalized to99.5 s per image to compensate for downtimes. The absolute counts and rates are pre-
sented in Table 8.1.

since the end of April 2021, the initial few days of operation were problematic
due to camera and data acquisition (DAQ) issues. Consequently, that period is
excluded from the analysis.

The rates of bioluminescence images and clusters, which respectively count im-
ages with at least one bioluminescence cluster and individual bioluminescence
clusters, are presented in Figure 8.1. Notably, these rates vary by almost an or-
der of magnitude, also the rates are accumulated for three days. Most of the
time, both cameras show a simultaneous increase or decrease in the rates, with
comparable rates between them. Although both cameras show generally syn-
chronous increases or decreases in their rates, with similar rates between them,
some periods of up to a month exist where one camera records a substantially
higher rate than the other before the curves converge again. While the exact rea-
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8.1. Periodic Variations in Bioluminescence Rates

Table 8.1: Summary of the detected bioluminescence in images. Camera 1 and 2 are
located in the modules PMT-Spectrometer 1 and PMT-Spectrometer 2, respectively. The
numbers in the table are for the period from 2021-06-21 to 2022-12-31, which is 558 days.
Figure 8.1 shows the timeline of the rates. As outlined in the text, Camera 1 which is
lower to the seafloor, captures around 20% more bioluminescence as Camera 2.

Bioluminescence images Bioluminescence cluster

Camera Images Counts Rate [1/h] Counts Rate [1/h]

Camera 1 476714 8356 0.634 13094 0.993
Camera 2 447790 6160 0.497 10564 0.853

son for this variation remains uncertain, it could potentially stem from different
concentrations of bioluminescent organisms or variations in current speed along
the water column. Regarding the depths of the cameras, the lower camera, posi-
tioned at a depth of 144m, detected roughly 20 % more bioluminescence images
and clusters compared to the higher camera located at 408m (Table 8.1).

It is known that bioluminescence happens when the organism faces forces either
by colliding with an object or caused by shear forces from turbulences in the
water. Therefore Figure 8.1 includes the mean current, too. The relation between
current speeds and bioluminescence rates can be found in Figure 8.15.

Another way to express the relationship is to consider the frequency space of
both signals. The tides have different periodic components, mainly from the
Earth (𝐸), moon (𝑀), and sun (𝑆) rotation mechanics. The Earth rotates in𝑇𝐸 =24 h, but simultaneously, the moon rotates in the same direction. There-
fore a point on the Earth’s surface requires a period

𝑡𝐸𝑀 = 2𝜋𝜔𝐸 − 𝜔𝑀 = 11𝑇𝐸 − 1𝑇𝑀 (8.1)

between equal alignments with the moon, where 𝜔 denotes the angular velocity,
and 𝑇 the rotation period. This formula can be generalized to any two periods
from the two rotating objects 𝑋 and 𝑌 to 𝑡𝑋𝑌 . Harmonic resonances, which occur
at frequencies that are integer multiples of a fundamental frequency 𝑓0, can lead
to the appearance of other periodicities in a system. Another type of period is
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Figure 8.2: Periodogram of the water currents and the bioluminescence appearance in
images. Important periods are marked. The x-axis is in logarithmic scale to cover the
total range of periods and labeled with time classical nomenclature for readability.

when the moon, Earth, and sun line up, called spring tide, which is half the
period (𝑡𝑀𝑆/2) of the sun and moon.

Figure 8.2 shows the periodograms for the two camera and measured current.
All three presented periodograms are comparable with peaks located at the ex-
pected period from the mechanics. The most significant period in the three
datasets is the 6-hour (6:13:41 h) period, which originates from the velocity
change and therefore is half of the semidiurnal tidal period (12:27:21 h). Around8 h (8:18:14 h) there is a harmonic resonance of the diurnal tide (24:54:42 h). Also
the moon period of 27 days and the spring tide are clearly visible. What cause
the period around 2.5 days remains unclear.

100



8.2. Spatial Distribution of Bioluminescence Emissions in the Images

10−3
10−1

pd
f

50th 90th 95th fit
bioluminescence
camera 1

bioluminescence
camera 2

10−3
100

pd
f

0 5 10 15 20
distance along cable [m]

−50
5𝜒

Figure 8.3: Camera’s distance distribution of detected bioluminescence along the cable.
The distance calculation use bioluminescence clusters close to the cable position and
combines optical projection with the known cable position to access the missing 3D
information from the 2D image. The data can be modeled with a log-normal distribution.
The plots includes the 50th, 95th, and 99th percentiles.

8.2 Spatial Distribution of Bioluminescence Emissions

in the Images

Bioluminescence is triggered mainly by mechanical forces, with only a minority
occurring spontaneously [80–82]. Consequently, organisms emit light during
collisions or turbulence encounters. In the context of a neutrino telescope like
P-ONE, understanding how these emissions are distributed around an obstacle,
such as the detector cable or module, is crucial, since bioluminescence emissions
can create background noise for neutrino reconstruction. Cameras, such as the
one installed in STRAW-b, can provide insights into this distribution, as they de-
tect the direction of an emission. However, a single camera cannot fully measure
the distribution, as the distance of an emission remains unresolved.

To obtain distance information from the camera image, the known position of
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Table 8.2: Parameters of the fitted distance distribution of Equation 8.2. Figure 8.3
shows the distribution and the fits including 𝜒 2.
Camera | Module 𝛼 𝜇 𝜎
Camera 1 | PMT-Spectrometer 1 1.247±0.021 0.201±0.005 0.780±0.018
Camera 2 | PMT-Spectrometer 2 1.177±0.027 0.236±0.014 0.538±0.014

the cable relative to the camera can be used as a reference. The horizontal dis-
tance between the camera and the cable (295mm) and the distance between two
neighboring modules (24m) are the two known positions. These positions are
also identifiable in the image, as illustrated in Figure 6.1. To utilize the camera’s
optical projection (Chapter 5), a coordinate system is established along the ca-
ble with the z-axis and x-axis pointing towards the camera. The origin of this
coordinate system is placed at the same height as the camera, so the camera’s
position can be represented as (0.295, 0, 0) [m], the neighboring module as (0.295,
0, 24) [m], and the cable between the two modules extending from (0, 0, 0) [m]
to (0, 0, 24) [m]. To align the camera coordinate system with the outlined coor-
dinate system, a translation of 0.295m on the x-axis and a rotation matrix are
required to be applied to the camera coordinate system. By establishing this
coordinate transformation and mapping the pixel locations in the image to the
corresponding distances, it is possible to extract distance information from the
image along the cable.

To associate each bioluminescence emission with its closest point on the cable, a
simple pixel-based geometry approach is used, without considering the optical
projection. Each bioluminescence emission is assigned a distance value based
on the closest point on the cable. However, this method is only suitable for
organisms that emit light when triggered by the cable. If an organism’s posi-
tion in the image is significantly distant from the cable in space, this technique
may yield inaccurate distance measurements. Nevertheless, the cable’s position
is clearly visible in the bioluminescence cluster’s pixel positions (Figure 6.10 or
Figure 6.14), making this method feasible for the majority of clusters that are
located within a considerable distance from the cable.

As seen in Figure 8.3, the distributions of the calculated distances indicate that
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both cameras follow a log-normal distribution

𝑓𝑋 = 1(𝑥 − 𝜇)√2𝜋𝜎2 𝑒− 12𝜎2 log2( 𝑥−𝜇𝛼 ) (8.2)

where 𝜇 is a location parameter, 𝜎 is a scale parameter and 𝛼 is a shape pa-
rameter. Table 8.2 summarize the best fit parameters. The histogram considers
clusters that are within a 50 pixel distance to the cable. Furthermore, the his-
togram shows at which distance the camera detects bioluminescence. Both cam-
eras detect 50% of the clusters within the first meter and 90% below 5m. There
is no rise towards the 24m distance where the neighboring module is located.
Therefore, the camera is not sensitive enough for bioluminescence induced by
the neighboring module. Indeed, the module should cause about the same bi-
oluminescence rate as the 24m string segment between the two modules. This
is because the bioluminescence rate is proportional to the cross-section towards
the water flow (Section 8.4.1) and the 24m long cable with a diameter of 4 cm,
including the steel line and data cable has an area of 0.1m2 which equals the
area of the 13 inch module sphere.

Additionally, the distribution of bioluminescence emissions orthogonal to the
cable can be analyzed. As previously discussed in Section 7.1, the modules are
aligned with the current flow, resulting in the current’s velocity having only
an x-axis component based on the defined coordinate system. To extract 3D
information, it is assumed that bioluminescence emissions are orthogonal to the
current flow, i.e., along the y-axis. Therefore, the distance from the cable in pixels
can be converted to a distance on the y-axis using optical projection. While this
may not be an entirely accurate assumption, it can provide an estimate of the
radius around an object orthogonal to the currents. The distribution for both
cameras is shown in Figure 8.4. Around 50 % of the clusters are triggered within10 cm of the cable, while 90 % are located within a radius of 1.5m. These findings
are consistent with the water flow simulation presented in Section 8.4. Camera 2
displays a flatter slope, which may be attributed to the higher expected currents
for the upper camera, leading to an extended radius around the cable.
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Figure 8.4: Orthogonal distribution of bioluminescence around the cable. As the text
outlines, the distance is assumed to reflect the distance around the cable in an orthog-
onal direction to the currents.

8.3 Spectral Population of Bioluminescent Organ-

isms

Bioluminescence emission is biased towards blue light due to its better propa-
gation in water. However, the emission spectra can vary depending on the emit-
ting species and the underlying biochemical reaction. For many organisms, the
emission spectra are known and can be expressed as a spectral catalog of biolu-
minescence [80]. The spectral catalog is visually represented in Figure 8.5. Since
the camera captures images in three different color channels (RGB), obtaining
spectral information of an emission requires special treatment, similar to white
balance in photography. This section provides an overview of the individual
components involved in this spectral analysis before presenting the measured
spectral population of bioluminescent organisms.
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Figure 8.5: Spectral catalog of bioluminescence emissions. Each point represents a
species, and the colors indicate their respective groups. Some species have a secondary
peak in their spectra which is illustrated as a horizontal line connecting the mean and
secondary peak. Data are from [80] and listed in Table D.1.

Figure 8.6: Hues of the deep-sea. A selection of bioluminescence emissions, sorted by
their hue (top left to bottom right). All images have the same zoom level. Remarkable is
the last image with two different emissions, including their hue. Hues from the first row
predominantly appear in the lower module (PMT-Spectrometer 1) as shown in Figure 8.8.
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8.3.1 Hue of the Detected Bioluminescence

A common technique for interpreting RGB color is transforming the values into
a different color space, such as HSV (hue, saturation, and value). The hue com-
ponent of HSV represents an angle on a color wheel, ranging from 0 to 360◦, and
can be calculated from the RGB values using the following formula:

hue(𝑅, 𝐺, 𝐵) = 60◦⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mod (𝐺−𝐵Δ , 6) if 𝑅 ≥ 𝐺 ∧ 𝑅 ≥ 𝐵2 + 𝐺−𝐵Δ if 𝐺 > 𝑅 ∧ 𝐺 ≥ 𝐵4 + 𝐺−𝐵Δ if 𝐵 > 𝑅 ∧ 𝐵 > 𝐺 (8.3)

where Δ = max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵).
Each bioluminescence event could be mapped to a hue value using the RGB in-
tensity parameters measured by the cluster detection. Figure 8.6 shows a selec-
tion of bioluminescence events sorted by hue, covering the full range of recorded
hues. The hue distribution in both cameras is shown in Figure 8.8. It is notewor-
thy that both distributions show a similar prominent peak around 170◦ hue and
that camera 1 shows a peak below 135◦ hue that camera 2 does not. However, it
is essential to note that hues cannot be directly translated into a spectral signa-
ture.

8.3.2 Spectral Camera Response

The camera response must be considered to calculate the hue of an emission
spectrum. If an emission has a specific spectrum 𝐼 (𝜆), the spectrum convo-
lute with the acceptance spectra 𝑎𝑐(𝜆) of the individual color channel 𝑐 and the
recorded intensity is

𝐼𝑐 = (𝐼 ∗ 𝑎𝑐)(𝜆) = ∫ ∞
−∞ 𝐼 (𝜆) 𝑎𝑐(𝜆) 𝑑𝜆. (8.4)

Hence, a hue value can be calculated for each emission spectra, but the inverse
is not directly possible. Furthermore, the transmittance spectra of the water
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Figure 8.7: Summary of the transmittance distributions for the simulation. The water
model 𝑡𝑤(𝜆, 𝑟) uses the values reported from [83] as it is in good agreement with the at-
tenuation measurement of STRAW but contains finer wavelength resolution [13]. Glass
transmittance and camera acceptance base on the values listed in their datasheets [44,
54, 61].

𝑡𝑤(𝜆, 𝑟) and the glass housing 𝑡𝑔(𝜆) need to be integrated with𝐼𝑐 = (𝐼 ∗ 𝑎𝑐 ∗ 𝑡𝑤(𝑟) ∗ 𝑡𝑔)(𝜆)= ∫ ∞
−∞ 𝐼 (𝜆) 𝑎𝑐(𝜆) 𝑡𝑤(𝜆, 𝑟) 𝑡𝑔(𝜆) 𝑑𝜆 (8.5)

where 𝑟 is the distance between the bioluminescence emitter and the cam-
era. The transmittance spectra of the different components are shown in
Figure 8.7.

Fortunately, a variety of bioluminescence spectra 𝐼 (𝜆) are known by their peak
position and width. In a simplified scenario, based on the bioluminescence cata-
log, an individual bioluminescence spectrum can be approximated with a Gaus-
sian function of standard deviation 35 nm [80]. In addition, the camera accep-
tance curve can be obtained from its datasheet. However, the distance 𝑟 between
the emitter and the detector remains unknown, as no 3D information is available
from a 2D image. As a result, the spectral analysis of a particular emission can
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Figure 8.8: Comparison of the detected and simulated hue distribution. The data rep-
resents all detected bioluminescence in the period from 22.12.2021 - 31.12.2022. The
simulation requires a spectral population of emitters which is shown in Figure 8.9. The
color scale represents the monochromatic color for a specific hue angle as reference, but
the hue angle gets ambiguous for non-monochromatic spectra, as outlined in the text.

only provide limited information, as the water absorption properties are highly
dependent on the color, which can lead to a shift in the peak wavelength of the
spectrum depending on the distance between the emitter and the detector.

8.3.3 Modeling the Spectral Population of Bioluminescent

Organisms

By analyzing a population of bioluminescent emitters (spectral population), de-
termining the distance for a single bioluminescence event, as in Section 8.3.2,
is not necessary. Instead, the distance can be described by a distribution. A
set of emitters is simulated where the peak wavelength (𝜇) for each emitter is
drawn from the spectral population, and the distance (𝑟) is drawn from the dis-
tance distribution measured in Figure 8.3. The resulting hue distribution is then
compared to the hue distribution from all images, as shown in Figure 8.8.
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However, the simulation requires some more components to be accurate. The
water model, 𝑡𝑤(𝜆, 𝑟), uses values reported by [83], which are in good agree-
ment with the attenuation measurement of Strings for Absorption Length in
Water (STRAW) and contain finer wavelength resolution [13]. The transmit-
tance distributions for all components listed in Equation 8.5 are summarized
in Figure 8.7. The other two components are modeled with data taken from
their datasheets [44, 54, 61]. A camera model then adds normally distributed
noise to the simulated intensity readings. Finally, a camera DAQ model applies
upper and lower intensity thresholds to integrate saturation and its opposite.
The range between the upper 𝑡ℎmax and lower 𝑡ℎmin intensity thresholds is 16 bit,
hence 𝑡ℎmax = 216 𝑡ℎmin.

Matching the simulation to the data was done manually by comparing different
configurations per iteration. Naive minimizers did not perform well, mainly be-
cause generating a single hue probability density function required several sec-
onds with the current simulation. Before integrating a more sophisticated min-
imizer, the simulation needs speed improvements, which are beyond the scope
of this thesis. Therefore, the reported values are a rough estimate.

To accurately reproduce the measured hue distribution(Figure 8.8), the simula-
tion needs a distribution for the emitters population, referred to as the spectral
population hereafter. Each emitter in the spectral population is simulated with a
Gaussian function centered at its peak wavelength and a full width at half max-
imum (FWHM) of 82 nm (𝜎=FWHM/√8 ln(2)=35 nm), which agrees well with
the values reported in Figure 8.5. The spectral population, 𝐻 , is modeled as a
sum of Gaussian distributions𝐻 (𝜆 | 𝜇, �⃗�, 𝑠 ) = ∑𝑖 𝑠𝑖  (𝜆 | 𝜇𝑖, 𝜎2𝑖 )

= ∑𝑖 𝑠𝑖𝜎√2𝜋 𝑒− 12( 𝜆𝑖−𝜇𝑖𝜎𝑖 )2 (8.6)

where 𝑚𝑢, �⃗�, and 𝑠 define the peak positions, width, and scale (amplitude).
Moreover, the camera noise model must be incorporated, whereby the added
noise in green and red colors is 20% higher than in blue. Thermal effects may be
the reason for this behavior; also, the camera sensor tries to match the accep-
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Table 8.3: Parameter of 12 Gaussians to model the spectral population. The simulation
uses the spectral population to describe the measured hue distribution. The scale1 and
scale2 values, measured in permille, represent the scaling factors for the two cameras.
For completeness, the Gaussians at 689 nm and 443 nm are listed even, so they do not
appear in the final population (scale=0 ‰). Figure 8.9 illustrates the resulting spectral
population probability density function (PDF).𝜇 [nm] 689 565 514 500 492 486 482 478 471 466 458 443𝜎 [nm] – 14 7 7 4 3 3 3 3 3 3 –
scale1 [‰] 0 69 27 27 275 302 165 110 14 8 3 0
scale2 [‰] 0 0 29 29 295 324 177 118 15 9 3 0

tance in the infrared (Figure 8.7).

Figure 8.9 illustrates the resulting spectral population to reproduce the detected
hue distribution (Figure 8.8). Furthermore, it includes a representation of the
bioluminescence catalog (Table D.1 [80]). Surprisingly, the spectral populations
align perfectly with the bioluminescence catalog. The primary hue peak at 170◦
in both cameras is expressed by the same sub-part of the spectral populations.
The minor hue peak, which only appears in Camera 1 (located closer to the
ground), requires a population around 565 nm and a standard deviation of 14 nm.
The publication of the bioluminescence catalog reports a standard deviation of14 nm for some organisms; also, it remains unclear to which organism this pa-
rameter refers [80, 84].

8.3.4 Spectral Classification of Emitting Organisms

Assuming that the bioluminescence catalog covers all the species present in the
Cascadia Basin, the peak at 565 nm can be attributed to Tomopteris nisseni. This
species belongs to the segmented worm group (Annelida) and is reported to be
planktonic, indicating that it cannot move against water currents [80, 84]. Its
size ranges from 3 cm–40 cm, and it weighs between 0.5 g–50 g [84]. Figure 8.10
displays an image of Tomopteris nisseni. Some of the yellowish images shown
in Figure 8.6 reveal a structure that matches that of a worm. Therefore, all ev-
idence suggests the presence of Tomopteris nisseni. It is also notable that this
species only appears in the lower camera, with a rate of 69‰ among all bio-
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Figure 8.9: Spectral bioluminescence population t reproduce the hues distribution mea-
sured with the cameras in Figure 8.8. The distribution describes the population of Gaus-
sian emitters, each with a FWHM of 82 nm. Table 8.3 provides the parameters modeling
the spectral population. The lower plot shows the peak positions of listed organisms in
the bioluminescence catalog summarized in Table D.1 [80].
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Annelida | Tomopteris nisseni Coelenterata

Crustacea Ctenophora

Mollusca | Leachia pacifica Pisces

Protozoa Tunicata

Figure 8.10: Images of species with their biological classifications. The listed classi-
fications are all part of the bioluminescence catalog Table D.1 [80]. Tomopteris nisseni
and Leachia pacifica are the two species detected by the spectral analysis outlined in
Section 8.3. Images by courtesy of [85–87].
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luminescence. Organism classification based on remotely operated underwater
vehicle (ROV) videos from dives close to San Francisco indicates that Tomopteris

nisseni is present in the lowest 200m layer from the ground [88]. However, this
data is not represented in a distance-to-ground distribution.

Following the same principle, Figure 8.9 reveals the presence of two different
emissions from the Leachia pacifica. Leachia pacifica is a genus of glass squids
(Mollusca) and the species Leachia pacifica is about 15mm–25mm long. Females
of this species develop light organs on the ends of their third arm pairs as they
mature, which are thought to be used in mating displays to attract males [89, 90].
The two species emitting at 514 nm and 500 nm have an equal fraction of the total
spectral population of 29‰ and 27‰ in the cameras 1 and 2, respectively.

Other species can not be explicitly identified, as various species emit light below500 nm. It is likely that multiple organisms contribute to the prominent peak in
the spectral population at 470 nm–500 nm. However, the spectral population re-
veals that there are very few organisms emitting light below 450 nm, despite the
camera still being sensitive in this range, and the water being more transparent
compared to the 565 nm emitted by Tomopteris nisseni.

Based on previous mentioned dives off the coast of San Francisco, the promi-
nent peak could be explained by the presence of Ctenophora organisms (also
known as comb jellies). Reports suggest that Ctenophora and Annelida 1 are
the main contributors to bioluminescence in the deep sea. The emission wave-
length of Ctenophora organisms aligns with the prominent peak, while Annelida

emits light at a different wavelength. This suggests that Ctenophora are likely
responsible for the majority of bioluminescence emissions around the modules
[88].

In conclusion, this section demonstrates that spectral analysis based on cam-
era images can reveal the spectral population of emitting organisms. In some
cases, single species can be identified by matching the spectral population to a
bioluminescence catalog that reports only one species for a specific wavelength
range. However, it is important to note that the identification of species depends
on the completeness of the bioluminescence catalog.

1Annelida is refereed to its class Polychaeta in [88]
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8 Bioluminescence at Cascadia Basin

8.4 Bioluminescence Triggers

Bioluminescence is predominantly triggered by mechanical forces, with only
a small proportion occurring spontaneously [80–82]. Mechanical forces are
caused by the flow of water around objects, including the components of
the detector. Understanding the relationship between water flow speed and
the emission rate is crucial for predicting the probability of bioluminescence
emissions in future neutrino telescopes like P-ONE.

This section will cover the mathematical dependency between the two variables
and provide a hydrodynamic description. The flow of water around objects can
create vortex street oscillations, which can even be measured by the magnetic
compass of the modules. Finally, the section will present the distribution be-
tween the flow speed and emission rate, from which the concentration of biolu-
minescent organisms can be estimated.

8.4.1 Bioluminescence Emission Rate and Water Flow

In principle, there are two sources, which are contact forces when the organisms
collide with an object and shear forces from the induced turbulences around
an object. Spontaneous emissions are excluded in the following due to the
rare probability [80–82]. Therefore the bioluminescence emission rate induced
around an object is 𝑅 = 𝑅contact + 𝑅shear. (8.7)

The contact emission rate

𝑅contact = 𝑐bio 𝐴⟂ 𝑝contact |�⃗�| (8.8)

can be expressed by the cross-section of the object 𝐴⟂ which measures orthog-
onal to the flow velocity 𝑣 and the concentration of bioluminescent organisms𝑐bio in the water. 𝑝contact denotes the emission probability and is approximately
constant [91]. The emission probability due to shear stress is more complex as
it is linearly connected to the water current’s gradient with

𝑝shear(�⃗�) ∼ 𝛼 ∇�⃗� (8.9)
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where 𝛼 is a proportionality factor [92–94]. In order to calculate the emission
rate, the volume 𝑉 around the object that gets disturbed must be considered
with 𝑅shear = 𝑐bio 𝛼 ∭𝑉 ∇�⃗� 𝑑𝑉 (8.10)

where 𝛼 is chosen that 𝑐bio is identical to Equation 8.8. By assuming an organism
emits only once, each emission can be seen as a divergence, and the volume
integral can be expressed by the divergence theorem to

𝑅shear = 𝑐bio 𝛼 ∯𝑆 �⃗� �̂� 𝑑𝑆. (8.11)

with the closed surface 𝑆 around the volume 𝑉 and the outward pointing unit
normal �̂� at each point on the surface. This can be further simplified by choosing
a box around the object that is big enough to cover the whole flow disturbance
by the module. Furthermore, the box should align with the current so that two
opposite surfaces are orthogonal to the current and all other surfaces are parallel
to the current. The contribution of the parallel surfaces to the integral is 0 as the�̂� is orthogonal to �⃗� by the definition of the surfaces. Hence, the rate of emissions
is proportional to the bioluminescent organisms flow through the surface facing
the current 𝑅shear = 𝑐bio 𝛼 𝐴∗⟂(�⃗�) |�⃗�|. (8.12)

The surface is the effective cross-section covering the entire flow disturbance
downstream. Therefore, the surface size depends on the flow vector �⃗�.

As shown in the following Section 8.4.2, 𝐴∗⟂ can be assumed constant for the
expected flow speeds. Hence, the rate of bioluminescence emissions is pro-
portional to the flow speed and the concentration of bioluminescent organisms
with 𝑅 = 𝑐bio 𝐴⟂ 𝑝contact |�⃗�| + 𝑐bio 𝛼 𝐴∗⟂ |�⃗�|= 𝑐bio (𝐴⟂𝑝contact + 𝛼 𝐴∗⟂) |�⃗�|. (8.13)
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Figure 8.11: Water flow gradient around module and cable for a velocity of 10 cms . The
underlying simulations were performed in Solidworks by Christian Spannfellner. Other
simulation visualizations are listed in Section E.1.

8.4.2 Flow Around the Detector

Although in most ways the exact manner in which

water moves is difficult to perceive and still more

difficult to define, as are the forces attending such

motion, certain general features both of the forces and

motions stand prominently forth, as if to invite or

defy theoretical treatment.

Osborn Reynolds, 1883 [91]

In order to derive the vector filed �⃗�, water current simulations are required. Typi-
cally, Navier-Stokes equations are used in simulations. Because 0 = ∇⋅�⃗� holds for
an incompressible medium, the incompressible Navier-Stokes equation is

0 = 𝜕𝑢𝜕𝑡 + (�⃗� ⋅ ∇) �⃗� + ∇2�⃗� − 𝜈∇�⃗� + ∇𝑃𝜌 (8.14)

where 𝜌 is the density, 𝑃 the pressure, and 𝜈 is the kinematic viscosity. The
kinematic viscosity connects to the viscosity 𝜇 with 𝜈 = 𝜇/𝜌 [95]. Figure 8.11
shows a simulation of a STRAW-b module and the mooring cable for a water
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Figure 8.12: Reynolds number distribution for the module and cable (a) and drag coef-
ficient of a spheres with different surfaces (b). The numbers along the drag coefficient
indicate several flow regimes. While the Reynolds number increases, the attached lam-
inar flow (1.) starts to separate downstream, producing a vortex street (2.). The vortex
street transitions to a chaotic, turbulent wake (3.), and beyond the post-critical flow, the
boundary layer is fully turbulent (4.) [96].

flow of 10 cms . Running simulations is computationally intensive and requires
an accurate description of an object, including the surfaces exposed to the flow,
and is difficult to calibrate to reality, especially for remote objects.

A common way to compare and predict fluid flow patterns besides simulations,
is the Reynolds number 𝑅𝑒 = |�⃗�|𝐿𝜈 . (8.15)

where 𝜈 is the previously mentioned kinematic viscosity and 𝐿 is a characteristic
linear dimension. Water has a kinematic viscosity of 𝜈=1.6737 × 10−6 m2s with a
density of 999.9 kgm3 at the water temperature of 2◦ in Cascadia Basin [97].

To estimate the upper limit of the expected Reynolds numbers, the following
overvalues the different parameters. The flow can be up to 20 cms . The char-
acteristic linear dimension is chosen to be the diameter of the 13” sphere and5 cm cable. Hence, Reynolds numbers can increase up to 105 and 104 for the ca-
ble and module, respectively. Figure 8.12 shows the expected flow distribution
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8 Bioluminescence at Cascadia Basin

Figure 8.13: Kármán vortex street in the wake of Juan Fernández Islands off the Chilean
coast [100]. To guarantee the stability of the vortices street, neighboring swirls rotate
in opposite directions with a fixed ratio of cross-street to along-street distance between
vortices [99]. The ratio depends on the object’s shape but is independent of the flow
speed.

and its translation to Reynolds numbers. In this range, the flow around an ob-
ject is laminar upstream and starts to separate and gets turbulent at around 80◦
from the front stagnation point - the point which faces the flow [96, 98]. In the
wake, a so-called Kármán vortex street (Figure 8.13) develops, which gradually
decreases in regularity for higher Reynolds numbers as the wake gets turbulent
[96, 98]. The vortex street is a repeating pattern of swirling vortices. Neigh-
boring swirls rotate in opposite directions with a fixed ratio of cross-street to
along-street distance between vortices. The ratio or angle depends on the size
but is necessary to guarantee the stability of the vortices street [99]. Hence, 𝐴∗⟂
can be assumed constant, and the rate of bioluminescence emissions is propor-
tional to the flow speed and the concentration of bioluminescent organisms as
summarized in Section 8.4.1.
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8.4.3 Induced Oscillations from Kármán Vortex Streets

As previously mentioned, the flow around the module and cable is in the range
where Kármán vortex streets appear in the wake of the objects. Figure 8.13
shows a Kármán vortex streets in clouds downstream of Juan Fernández Is-
lands. Vortices generate with a frequency defined by the Strouhal number (𝑆𝑡)
and 𝑓 = 𝑆𝑡 |�⃗�|𝐿 . (8.16)

In the range of Reynolds numbers from 250 to 2 × 105, the Strouhal number
measures 𝑆𝑡 ≈ 0.21(1 − 19.7𝑅𝑒 ) (8.17)

for a sphere [101] and the frequency is

𝑓 = 0.21(|�⃗�|𝐿 − 19.7 𝜈𝐿2 )= 0.21𝐿 |�⃗�| − 4.137 𝜈𝐿2 . (8.18)

As the vortices couple to the object causing the vortex street, the object starts
to oscillate. This provides a unique feature to verify the previously made flow
assumptions around the cable and module based on Reynolds numbers. The
magnetic sensor, which provides a heading every 10 s, measures the module’s
oscillations. The water current data origins from a current meter measuring
close to the ground and located ∼2.5 km northeast of the module. The magnetic
heading aligns well with the current data as shown in Figure E.5 for an exemplary
period.

By filtering periods of constant water flow in speed and direction, the frequency
space of the heading data reveals a prominent oscillation peak ( 8.14a) that dis-
appears for periods with changing currents. The amplitude of the strongest os-
cillations is approximately 5◦, as shown in Figure E.6, while the average is around1.5◦. The correlation between vortex street frequency and flow speed is shown
in Figure 8.14, where the best-fit parameters of the slope (i.e. 0.21/𝐿) and offset
(i.e. 4.137, 𝜈/𝐿2) are (0.59 ± 0.10) 1m and (−0.02 ± 0.01) 1s , respectively. This re-
sult is in good agreement with the expected values for a module of diameter 13
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Figure 8.14: Kármán vortex street oscillations of the module. The oscillations are mea-
sured with the magnetic heading sensor of the module, and the water current data ori-
gins from a currentmeter measuring the flow close to the ground and located ∼2.5 km
northeast of the module. During periods of stable currents, the vortex street induces os-
cillations of the module’s heading (a). The linear dependency of oscillations frequency
and current speed (b) aligns linearly as expected from theory.

inches, where equation 8.18 yields a slope of 0.64 1m and an offset of 6 × 10−5 1s .
However, the measured oscillation frequency is lower than predicted by equa-
tion 8.18, which can be explained by the fact that the module rotates around
the cable, adding momentum and allowing it to rotate in the direction of the
new generating vortex, thereby damping the initialization of the next vortex on
the opposite side. In other words, the object has a larger effective size than its
physical dimensions with respect to Equation 8.18. Additionally, the tension in
the string has a damping effect on the oscillation.

8.4.4 Concentration of Emitting Organisms

As indicated in Section 8.4.1, the relationship between the expected biolumi-
nescence emission rate and the current speed at Cascadia Basin is linear. To
establish this relationship in the data, it is necessary to establish a connection
between the measured current speeds and the detected bioluminescence in the
captured images. The current speeds at Cascadia Basin are recorded using a cur-
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Figure 8.15: The upper plot displays the PDFs of the measured flow speeds 𝑓𝑉 (|�⃗�|)
(shown in gray) and the flow speeds during which bioluminescence occurrences took
place 𝑓𝑉∩𝐵(|�⃗�|). These PDFs are utilized to establish the relationship between cur-
rent speed and bioluminescence emission rate, as described in the text. The lower
plot demonstrates the expected linear dependence between the emission rate and flow
speed, which was derived in Section 8.4.1.

rentmeter positioned 2.1 km northwest of STRAW-b, as indicated in Figure 2.9.
The process of detecting bioluminescence in the images is described in Chap-
ter 6.

The bioluminescence emission rate can be expressed as

𝑅(𝑡) = 𝑑𝑑𝑡 𝑛(𝑡) (8.19)

where 𝑛 represents the total number of emissions at time 𝑡. The time can then be
used to establish the link between the emission rate and current speeds. How-
ever, directly accessing the bioluminescence emission rate at a specific moment
in time poses challenges due to the low frequency of images displaying biolu-
minescence, which is approximately 1 1h as shown in Figure 8.1. Additionally,
the current speed undergoes continuous changes, as depicted in Figure 8.2 and
Figure E.5. To overcome this limitations, the emissions rate can be calculated
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over all periods at a specific current speed. Let 𝑇 be the total duration, 𝑁 is
total number of emissions and |�⃗�| represent a specific current speed. The total
duration at a specific current speed can be calculated with

𝑡(|�⃗�|) = 𝑇 𝑓𝑉 (|�⃗�|) (8.20)

where 𝑓𝑉 is the PDF of the current speeds. Similarly, the total number of emis-
sions during periods with a specific current speed can be expressed as

𝑛(|�⃗�|) = 𝑁 𝑓𝑉∩𝐵(|�⃗�|) (8.21)

where 𝑓𝑉∩𝐵(|�⃗�|, 𝐵) is the PDF of current speeds during which the condition 𝐵
of an emission occurrence holds. The emission rate can then be calculated as
follows:

𝑅(|�⃗�|) = 𝑛(|�⃗�|)𝑡(|�⃗�|) (8.22)

= 𝑁𝑇 𝑓𝑉∩𝐵(|�⃗�|)𝑓𝑉 (|�⃗�|) (8.23)= 𝑁𝑇 𝑓𝐵|𝑉 (|�⃗�|) (8.24)

where 𝑓𝐵|𝑉 (|�⃗�|) represents the conditional density of an emission occurrence
given a specific current speed [102]. The probability density functions 𝑓𝑉 (|�⃗�|)
and 𝑓𝑉∩𝐵(|�⃗�|) are displayed in the upper plot of Figure 8.15, while the lower
plot illustrates the emission rate 𝑅(|�⃗�|). Linear fits of the calculated emission
rate 𝑅(|�⃗�|) = 𝑚|�⃗�| + 𝑅0 (8.25)

result in best-fit parameters, which are summarized in Table 8.4. Using
Equation 8.13, the slope translates to the concentration of emitting organisms
with 𝑐bio ≈ 𝑚𝐴∗⟂ . (8.26)

The offset parameter 𝑅0 is not considered, as it is close to 0 for both cameras.
The effective area (𝐴∗⟂) is here a combination of field of view (FoV) and the effec-
tive area of the flow used in Equation 8.13. This effective area can be calculated
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Table 8.4: Parameters to obtain the concentration of emitting organisms. The presented
errors reflect the statistical error without the systematic error, which are discussed in
Section 8.4.4. 𝑚 [ smh] 𝑅0 [ 1s ] 𝑦∗ [m] 𝑧∗ [m] 𝐴∗⟂ [ 1m2 ] 𝑐bio [ 1m3 ]
Camera 1 17.0±1.4 0.0±0.1 0.154 0.982 0.151 0.031±0.003
Camera 2 12.3±1.4 0.1±0.1 0.124 0.794 0.096 0.035±0.004

from the bioluminescence distributions along (Figure 8.3) and orthogonal to the
line (Figure 8.4). The orthogonal distributions can be directly used, as the mod-
ule aligns with the currents, and therefore the distributions show the required
distance orthogonal to the currents. Each distribution has an effective distance
defined by 𝑑∗ = 1/max(𝑓𝑋 ) (8.27)

where 𝑓𝑋 is the PDF. The effective area is the product of both effective dis-
tances.

The calculation lacks the emission probabilities for contact (𝑝contact) and shear (𝛼)
from Equation 8.13, which cannot be measured with the existing equipment in
situ. Incorporating laboratory measurement values is also not preferable due to
differences in the environments, resulting in more inaccuracy and reduced com-
parability to other measurements. Without considering the emission probability,
the presented concentration can be expressed as an adequate concentration of
emitting organisms that includes those probabilities.

Apart from emission probabilities, other uncertainties contribute to this mea-
surement, which can only be roughly estimated. For instance, the effective area
depends on the 3D position information, but the camera provides only 2D in-
formation, as explained in Section 8.2, which particularly affects the orthogo-
nal distance distribution. Furthermore, the vertical distance between the cur-
rentmeter and the module adds uncertainty. As flow speed is measured close
to the sea floor, the flow should be increased at the module. Ocean Networks
Canada (ONC) also provides an acoustic Doppler current profiler (ADCP) that
profiles the flow speed up to 500m from the ground. However, the ADCP data
has much noise due to the measurement principle. Therefore, the ADCP data are
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not used to decrease the complexity of the analysis. Lastly, the cluster detection
requires a minimum intensity underestimating the actual event rate.

In conclusion, the systematic error in the concentration is substantial. Assum-
ing a 100 % systematic error on the effective area, which includes the uncertainty
in the bioluminescence cluster detection because it is linearly connected, and a20 % systematic error on the current speed, the overall systematic error accumu-
lates to 120 %. Table 8.4 presents the parameters and the resulting concentration
of emitting organisms with their statistical error. Both cameras yield a similar
concentration of (0.03 ± 0.03) 1m3 , including the systematic error, which agrees
with the range of 0.622 1m3 –0.018 1m3 measured in ANTARES [103].

124



9 Conclusion

This thesis offers a comprehensive study of deep-sea bioluminescence using
cameras, focusing specifically on its relevance to the future Pacific Ocean Neu-
trino Experiment (P-ONE) located in the Cascadia Basin off the west coast of
Vancouver Island, BC. The thesis encompasses a broad range of topics, includ-
ing a detailed description of hardware components, the diverse aspects of the
data acquisition (DAQ) system, bioluminescence detection in images, and vari-
ous analyses of bioluminescence properties.

Despite the extreme depths of over 1.5 kilometers in the ocean abyss, the fu-
ture neutrino telescopes P-ONE encounter life through bioluminescence. Bio-
luminescence is the emission of light by living organisms, including bacteria,
plankton, and fish, found in the deep sea. Although bioluminescence presents
a challenge for neutrino telescopes, requiring an understanding of its physical
and biological processes and advanced modeling techniques to account for its
effects, it also provides a unique opportunity for biologists to study the vast and
unexplored habitat of the deep sea, which is the largest on Earth.

At the prospective location of P-ONE, two pathfinder missions, Strings for Ab-
sorption Length in Water (STRAW) and STRAW-b (Strings for Absorption Length
in Water b), were carried out to examine the environmental conditions and as-
sess the potential for a large-scale neutrino detector. STRAW focused on measur-
ing water’s optical properties in the Cascadia Basin, while STRAW-b employed
cameras and spectrometers to study bioluminescence in the deep sea. The ob-
tained results support the feasibility of a long-term neutrino telescope based at
the Cascadia Basin.
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9 Conclusion

The initial part of this thesis centers around the crucial elements of the STRAW-b
pathfinder mission, encompassing low-level module operations, the DAQ sys-
tem, and hardware components. Notably, particular attention is dedicated to the
integration of the camera and flasher system within specific STRAW-b modules.
Subsequently, the thesis delves into camera optics, presenting an analytically
derived model that incorporates lens projection and the distortion of the spher-
ical pressure housing.

The subsequent section of this thesis focuses on image processing techniques
employed to detect bioluminescence emissions in the images. The detection
algorithm follows a two-folded approach. Firstly, clusters of bright pixels are
formed and parameterized, taking into account the characterization of pixel
noise. This characterization enables the establishment of an intensity threshold
for each pixel, determining its classification as bright. Secondly, a novel machine
learning (ML) technique is developed to filter out clusters originating from biolu-
minescence, distinguishing them from non-bioluminescent clusters. The neural
network (NN) is trained using regions in the images where high bioluminescence
density is visually apparent. Ultimately, the trained NN accurately identifies
bioluminescence throughout the entire image. Results demonstrate the excep-
tional performance of the NN classification, which only requires a minimum
cluster size of five pixels for bioluminescence filtering. This capability enables a
multifaceted analysis of the bioluminescence phenomenon, summarized in the
following.

The utilization of the flasher system allows the camera to track the position of
neighboring modules. The study demonstrates that the neighboring modules
align synchronously with the currents without any observed rotation between
them. Additionally, the relative module position has a vertical displacement of
approximately 20 cm. This information is crucial as it simplifies the cluster de-
tection process, as the training of the ML algorithm relies on the assumption of
a constant mooring line and module positions.

The camera enables an indirect assessment of module contamination caused by
biofouling or sedimentation. This measurement relies on monitoring the de-
crease in brightness of bioluminescence over time. The results demonstrate a
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brightness annual loss of (34.0 ± 24.5) % and (34.3 ± 19.9) % for the two cam-
eras. Visual inspection of the STRAW by a remotely operated underwater vehi-
cle (ROV) suggests that biofouling is the primary contributing factor, although
further analysis is required to validate this observation.

Moreover, the cameras measure bioluminescence rates of approximately 1 1h .
Analysis of the periodic variations in bioluminescence rates reveals a strong cor-
relation with water currents, where the dominant periods of both variables align.
These periods can be attributed to the astronomical influences of the Earth,
moon, and sun, which drive the ocean tides.

Additionally, it is observed that bioluminescence emissions exhibit a high con-
centration around the mooring cable of the detector. Approximately 50 % of the
emissions occur within a 10 cm radius around the cable, while 90 % are concen-
trated within a 1.5m radius. This suggests that bioluminescence is predomi-
nantly triggered by collisions or shear stress.

The camera’s color information enables the measurement of bioluminescence
emission colors. Through comprehensive detector simulations, this thesis pre-
sents, for the first time, a measurement of the spectral population of biolumines-
cent organisms in the deep sea. The study demonstrates how the spectral popu-
lation and a catalog of bioluminescent organisms [80] can be utilized to identify
the contributions of individual species. Notably, the two identified species are:
tomopteris nisseni, a worm known for its yellow emission at (565 ± 14) nm, and
leachia pacifica, a glass squid emitting light at (514 ± 7) nm. It is noteworthy
that tomopteris nisseni accounts for 6.9 % of the emissions in the lower camera,
situated 144m above the sea floor, while its yellow emission is undetectable in
the upper camera positioned 408m from the sea floor. Indications in the litera-
ture have been found that tomopteris nisseni predominantly resides in the 200m
layer above the sea floor, although this information is not directly reported [88].
Furthermore, the dominant peak at 486 nm in the spectral population, which
covers 50 % of the emissions, is likely caused by species of Ctenophora (comb
jellies).

Subsequently, a comprehensive analysis is conducted to derive the relation-
ship between the bioluminescence emission rate, the current speed, and the
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concentration of emitting organisms. This investigation necessitates a precise
comprehension of the water flows encompassing the detector. The findings re-
veal that the water flow surrounding the detector operates within the range
that generates vortex streets. These vortex streets induce oscillations of the
modules, which are effectively measured using the magnetic compass. By cor-
relating this data with the measurements from the currentmeter, the antici-
pated linear dependence between oscillation frequency and flow speed is con-
firmed. The observed oscillations exhibit an average amplitude of 1.5◦, with the
strongest peak reaching 5◦, and frequencies ranging from 0.01Hz–0.04Hz. Im-
portantly, this technique can be reversed, enabling the measurement of the cur-
rent speed around a module based on the oscillations detected by the magnetic
compass.

In this thesis’s concluding analysis, the concentration of emitting organisms is
estimated by examining the likelihood of bioluminescence emissions at various
flow speeds. The data collected from both cameras results in a concentration of(0.03±0.03) 1m3 . This measurement falls in the range of other sites instrumented
with neutrino telescopes.
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A Data Acquisition File Structure

STRAW-b’s data acquisition system (DAQ) is responsible for storing measure-
ment data in HDF5 files. Each HDF5 file contains sensor data as well as related
settings and status parameters, which are organized according to the structure
outlined in Section 2.2.3. For single measurements that are not continuous, such
as LiDAR scans, a single file is generated. For continuous measurements, a new
file is generated after a fixed rollover period to control the file size.

The file names follow the ONC data naming scheme and are structured as<deviceCode> <dateFrom>-SDAQ-<label>.hdf5.

The deviceCode is a unique identifier for each module (e.g., TUMPMTSPEC-

TROMETER001), the dateFrom is the starting date and time of the period to
which the file belongs, and the label corresponds to a Data Product Code
(DPC) in the ONC database (Oceans 2.0 or Oceans 3.0). Refer to Table A.1 for
information on which sensor data is stored in each file, along with the rollover
interval and DPC.

Each HDF5 group corresponds to a timeseries of data, and the time dataset in
each group stores the timestamps for that timeseries. Since the first dimension
of all datasets is time, all datasets within a HDF5 group have the same size along
the first dimension. For more information on the internal HDF5 file structure for
each DPC, please refer to the tables A.2 to A.7.
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A Data Acquisition File Structure

Table A.1: List of the most important data acquisition (DAQ) files in Strings for Absorp-
tion Length in Water b (STRAW-b) including Data Product Code (DPC) and the period
when a the DAQ starts a new file (rollover) to manage the maximum file size.

Sensor Modules rollovera DPCb label

3-Axis Accelerometer All Modules 24 h SMRD MODULE
3-Axis Magnetometer All Modules 24 h SMRD MODULE
PTHc All Modules 24 h SMRD MODULE
6 Powermeterd All Modules 24 h SMRD MODULE
3 Temperature All Modules 24 h SMRD MODULE
Camera Mini- & PMT-

Spectrometer
1 h MSSCD CAMERA

Mini-Spectrometer Mini- & PMT-
Spectrometer

24 h MSSD MINISPEC

Mini-Spectrometer LiDAR per run MSSD MINISPEC
16 PMT (TOT counts) PMT-Spec. 1 h PMTSD PMTSPEC
16 SiPM (TOT events) Muon-Tracker 24 h MTSD MUON
LiDAR (TOT events) LiDAR per run LIDARSD LIDAR

aPeriod after which a new file is started. The periods normalize to full hours, midnight, etc.
bData Product Code
cPressure-Temperature-Humidity sensor
dThe Powermeter measures for each channel current and voltage separately

Table A.2: HDF5 file structure of basic module DAQ file recorded by all modules. The
Ocean Networks Canada (ONC)’s Data Product Code (O-DPC) is used in the data base
(DB) of ONC to effectively filter the files.

O-DPC HDF5 Group Dataset Shape

SMRD accel time (t,)
SMRD accel x (t,)
SMRD accel y (t,)
SMRD accel z (t,)
SMRD magneto time (t,)
SMRD magneto x (t,)
SMRD magneto y (t,)
SMRD magneto z (t,)
SMRD pth humidity (t,)
SMRD pth pressure (t,)
SMRD pth temperature (t,)
Table continued on next page
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Table A.2 – continued from previous page

O-DPC HDF5 Group Dataset Shape

SMRD pth time (t,)
SMRD pwrmoni c2 current (t,)
SMRD pwrmoni c2 voltage (t,)
SMRD pwrmoni laser current (t,)
SMRD pwrmoni laser voltage (t,)
SMRD pwrmoni motor current (t,)
SMRD pwrmoni motor voltage (t,)
SMRD pwrmoni padiwa current (t,)
SMRD pwrmoni padiwa voltage (t,)
SMRD pwrmoni switch current (t,)
SMRD pwrmoni switch voltage (t,)
SMRD pwrmoni time (t,)
SMRD pwrmoni trb3sc current (t,)
SMRD pwrmoni trb3sc voltage (t,)
SMRD temperatures temp1 (t,)
SMRD temperatures temp2 (t,)
SMRD temperatures temp3 (t,)
SMRD temperatures time (t,)

Table A.3: HDF5 file structure of the Mini-Spectrometer DAQ file. The ONC’s Data
Product Code (O-DPC) is used in the DB of ONC to effectively filter the files. <ID>
refers to the Mini-Spectrometer which can be between 1 and 5. The LiDAR and
PMT-Spectrometer modules only hosts one Mini-Spectrometer (<ID>=1). The Mini-
Spectrometer module has five Mini-Spectrometers (<ID>=1..5) and therefore the HDF5
file has five HDF5 Group.

O-DPC HDF5 Group Dataset Shape

MSSD <ID> ADCcounts (t, 288)
MSSD <ID> exposure time (t,)
MSSD <ID> temperature after (t,)
MSSD <ID> temperature before (t,)
MSSD <ID> time (t,)
MSSD <ID> trigger counter (t,)

Table A.4: HDF5 file structure of the camera DAQ file. The ONC’s Data Product Code
(O-DPC) is used in the DB of ONC to effectively filter the files.

O-DPC HDF5 Group Dataset Shape

MSSCD camera exposure time (t,)
MSSCD camera exposure time cmd setting (t,)
MSSCD camera gain (t,)
Table continued on next page
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Table A.4 – continued from previous page

O-DPC HDF5 Group Dataset Shape

MSSCD camera lucifer options (t, 4)
MSSCD camera measured capture time (t,)
MSSCD camera measured download time (t,)
MSSCD camera measured exposure time (t,)
MSSCD camera raw (t, 1297, 977)
MSSCD camera reported resolution (t, 2)
MSSCD camera time (t,)

Table A.5: HDF5 file structure of the PMT-Spectrometer DAQ file. The ONC’s Data
Product Code (O-DPC) is used in the DB of ONC to effectively filter the files.

O-DPC HDF5 Group Dataset Shape

PMTSD counts ch0 (t,)
PMTSD counts ch1 (t,)

…
PMTSD counts ch15 (t,)
PMTSD counts time (t,)
PMTSD daq frequency readout (t,)
PMTSD daq state (t,)
PMTSD daq time (t,)
PMTSD daq trb (t,)
PMTSD hv ch0 (t,)
PMTSD hv ch1 (t,)

…
PMTSD hv ch15 (t,)
PMTSD hv power (t,)
PMTSD hv time (t,)
PMTSD padiwa offset (t,)
PMTSD padiwa power (t,)
PMTSD padiwa th1 (t,)
PMTSD padiwa th2 (t,)

…
PMTSD padiwa th16 (t,)
PMTSD padiwa time (t,)

Table A.6: HDF5 file structure of the Muon-Tracker DAQ file. The ONC’s Data Product
Code (O-DPC) is used in the DB of ONC to effectively filter the files.

O-DPC HDF5 Group Dataset Shape

MTSD counts ch0 (t,)
MTSD counts ch1 (t,)

…
Table continued on next page
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Table A.6 – continued from previous page

O-DPC HDF5 Group Dataset Shape

MTSD counts time (t,)
MTSD daq frequency readout (t,)
MTSD daq state (t,)
MTSD daq time (t,)
MTSD daq trb (t,)
MTSD hv hv value (t,)
MTSD hv time (t,)
MTSD padiwa offset (t,)
MTSD padiwa power (t,)
MTSD padiwa th1 (t,)
MTSD padiwa th2 (t,)

…
MTSD padiwa th16 (t,)
MTSD padiwa time (t,)

Table A.7: HDF5 file structure of the LiDAR DAQ file. The ONC’s Data Product Code
(O-DPC) is used in the DB of ONC to effectively filter the files.

O-DPC HDF5 Group Dataset Shape

LIDARSD counts ch0 (t,)
LIDARSD counts ch17 (t,)
LIDARSD counts ch18 (t,)
LIDARSD counts time (t,)
LIDARSD daq frequency readout (t,)
LIDARSD daq frequency trigger (t,)
LIDARSD daq pmt (t,)
LIDARSD daq state (t,)
LIDARSD daq time (t,)
LIDARSD daq trb (t,)
LIDARSD gimbal delay (t,)
LIDARSD gimbal pos x (t,)
LIDARSD gimbal pos y (t,)
LIDARSD gimbal power (t,)
LIDARSD gimbal time (t,)
LIDARSD hld file end (t,)
LIDARSD hld file start (t,)
LIDARSD hld time (t,)
LIDARSD laser diode (t,)
LIDARSD laser frequency (t,)
LIDARSD laser power (t,)
LIDARSD laser pulsewidth (t,)
LIDARSD laser set adjust x (t,)
LIDARSD laser set adjust x offset (t,)
LIDARSD laser set adjust y (t,)
Table continued on next page
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Table A.7 – continued from previous page

O-DPC HDF5 Group Dataset Shape

LIDARSD laser set adjust y offset (t,)
LIDARSD laser time (t,)
LIDARSD measurement step (t,)
LIDARSD measurement time (t,)
LIDARSD tot hld start time (t,)
LIDARSD tot time (t,)
LIDARSD tot time ns (t,)
LIDARSD tot tot (t,)
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B Sensor and Module
Malfunctions in STRAW-b

Exploration and research in the deep sea can be incredibly challenging due to the
harsh environment. Equipment used in this context must be designed and con-
structed to withstand the extreme pressures and temperatures found at great
depths. This can be a significant engineering challenge, as the materials and
components used must be able to function reliably despite the difficult condi-
tions. Additionally, because repair and maintenance are often not possible once
equipment is deployed in the deep sea, reliability is critical and a failure of even
a single piece of equipment could jeopardize an entire mission.

STRAW-b faced some issues with single components or entire modules. In the
following, the known malfunctions are discussed. As stated in Table B.1, a total
of four modules experienced a loss of communication since the deployment of
STRAW-b. Standard Module 3, in contrast to the others, had no network connec-
tion from the initial deployment. However, the remaining modules encountered
a loss of network connection after several months of operation. Determining the
exact cause of the connection issues while STRAW-b is deployed in the deep sea
remains challenging. However, there are indications that the problem could be
related to network connection issues, such as broken fibers or connector prob-
lems.

B.1 Analyzing Module Failures in STRAW-b

An interesting observation is that the electronics of Standard Module 3 success-
fully endured the deployment, as evidenced by the flashing LED response during
the remotely operated underwater vehicle (ROV) inspection. The flashing LED

137



B Sensor and Module Malfunctions in STRAW-b

Table B.1: Sensor and Module Malfunctions in STRAW-b. Further investigation into
the causes of lost communication with certain modules is discussed in Section B.1. Ad-
ditionally, Section B.2 summarizes the issues encountered with the broken FPGA in the
PMT-Spectrometer 2 module.

Module Malfunctions Date

Standard Module 3a no communication to module since deployment
PMT-Spectrometer 2 Padiwa: broken or short circuit

FPGA which is required for the
PMT readout

2021-10-11 11:11

WOM booting fails due to a broken SD
card hosting the OS (operating
system)

2021-10-30

Mini-Spectrometer lost communication to module 2021-06-14 02:30
LiDAR 2 lost communication to module 2021-11-28 10:09

aStandard Module 3 hosts the art installation radioamnion

serves as an indicator that the electronics survived the deployment. When the
module detects the light emitted by the ROV, it triggers the LED to flash, which
remains active for a few minutes before being permanently disabled to avoid
interference with subsequent operations. Another indication pointing towards
network connection issues is the power consumption of the modules, which is
continuously monitored by the mini-junction box (mJB). Comparing the power
consumption during booting sequences before and after module failures, a sim-
ilar chronological power consumption pattern can be observed, as depicted in
Figure B.1 for the WOM. This similarity suggests that the modules are booting
properly, and the issue lies specifically with the network connection. Further-
more, the statistic of ONC about connector failures is approximate 10 %, some-
thing considered too high for P-ONE. Consequently, penetrators and connectors
are not employed within the P-ONE system to mitigate this issue.

The failure of the WOM is anticipated to be connected to a broken SD-card
that hosted its operating system. This failure occurred subsequent to an unfore-
seen power outage experienced by the entire NEPTUN1 infrastructure due to a

1NEPTUNE is a ocean observatory off the west coast of Vancouver Island. Further informa-
tion are summarized in Chapter 2.
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B.2. FPGA Short Circuit Incident in the PMT-Spectrometer 2

Failed power cycle (Nov 4th) power cycle that worked (Oct 4th)

1s per bin

Figure B.1: Current consumption of the Wavelength-shifting Optical Module (WOM)
during boot sequence. The left plot shows a period of normal module operation, while
the right plot depicts the power up sequence after an unexpected power outage. Since
the incident, the WOM does not respond to network communication. The interpretation
is discussed in the text. Graphs courtesy of Lutz Köpke, University of Mainz.

storm in close proximity to the NEPTUN shore station. Notably, it is important
to highlight that only the WOM utilized an SD-card for hosting its operating
system, whereas the other modules employed eMMC (embedded MultiMediaC-
ard), which are more resilient to data corruption compared to SD-cards.

B.2 FPGA Short Circuit Incident in the PMT-Spectro-

meter 2

On October 11, 2021, at 11:11, a significant incident occurred in the PMT-Spec-
trometer 2 module of the system. The incident involved a short circuit in the
Field-Programmable Gate Array (FPGA) located on the Padiwa board. Unfortu-
nately, the FPGA could not be reprogrammed following the short circuit, ren-
dering it non-functional.

The functionality of the PMT-Spectrometer 2 module heavily relies on the FPGA
integrated into the Padiwa board. Its crucial role involves applying thresholds
to the signals received from the PMTs, enabling the accurate measurement of
time-over-threshold (ToT) as detailed in Section 2.2.4. However, due to the FPGA
malfunction, the signal processing capability of the PMT-Spectrometer 2 mod-
ule was compromised, resulting in the inability to record the signals from the
PMTs.
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B Sensor and Module Malfunctions in STRAW-b

It is important to note that while the FPGA issue affected the PMT signals, other
sensors present in the PMT-Spectrometer 2 module, such as the camera and
mini-spectrometer, remained unaffected. Their functionality and data acqui-
sition capabilities remained intact, allowing for continued operation and data
collection from these sensors despite the FPGA malfunction.
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C Cluster Detection and
Classification

C.1 Cluster Data Base Parameters

Description of the parameters that the detection algorithm stores for each clus-
ter. There are parameters which belong to the period used to calculate the noise
level (𝜇𝑖) and its standard deviation (𝜎𝑖). Other parameters refer to the image in
which the cluster occurs. And finally, parameters calculated on the clusters pixel
location, color and charge values. The parameters are separated in this three
groups in the following tables, Table C.1, Table C.2, and Table C.3, respectively.
It should be mentioned, that the python package pandas is used and therefore
multidimensional parameters are stored in different columns as pandas has in-
creased performance for dimensional data per column. E.g. a 2D position vector
is stored in two different columns with the suffices x and y.

Table C.1: Parameter about the period over which the pixels mean noise level (𝜇𝑖) and
its standard deviation (𝜎𝑖) is calculated.

Parameter Description Unit

mean std n Number of images in the period count
mean std start Date of periods first image date
mean std stop Date of periods last image date
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C Cluster Detection and Classification

Table C.2: Parameter of the image to which the cluster belongs.

Parameter Description Unit

time Capture time date
label A unique label for each cluster in one image. Labels can

occur more than once in a database if the clusters they
refer to belong to different images. Label 0 describes the
background, i.e. all pixels whose charge is lower than the
specified threshold.

count

Table C.3: Parameters calculated on the cluster’s pixels.

Parameter Description Unit

center of mass1 Coordinates of the center of mass of the
pixels belonging to the cluster with respect
to the charge.

𝑅int = 1∑𝑛𝑖=0 𝐼𝑖 𝑛∑𝑖=0 𝐼𝑖𝑟𝑖
pixel

center of pix1 Coordinates of the center of the pixels be-
longing to the cluster without considering
the charge.

𝑅pixel = 1𝑛 𝑛∑𝑖=0 𝑟𝑖
pixel

box center1 Coordinates of the center of the minimum
bounding box around the cluster’s pixels.

pixel

box size1 Width and height of the minimum bound-
ing box around the cluster’s pixels.

pixel

Table continued on next page
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C.1. Cluster Data Base Parameters

Table C.3 – continued from previous page

Parameter Description Unit

angle The angle by which the minimum bound-
ing box of the cluster is rotated to the x-
axis. The side of the box that encloses the
angle with the x-axis is the one that con-
nects the corner with the smallest y-value
to the next corner in the counterclockwise
direction.

rad

n pixel2 The number the cluster’s pixels. pixel

charge2 The integrated charges of the cluster’s pix-
els. The noise level (𝜇𝑖) is subtracted.

intensity

noise2 The integrated noise (𝜇𝑖) of the cluster’s
pixels.

intensity

sn mean2 The mean signal (pixels charge) to noise (𝜇𝑖)
ratio in multiples of the standard deviation
(𝜎𝑖) over the cluster’s pixels.

factor

sn sigma2 The standard deviation signal (pixels
charge) to noise (𝜇𝑖) ratio in multiples
of the standard deviation (𝜎𝑖) over the
cluster’s pixels.

factor

distance fov shortest distance of the center of pix to the
modules FoV boundary, i.e. where the PMT
mounting cuts the FoV of the camera.

pixel

distance cable shortest distance of the center of pix to ei-
ther the steel line or data cable

pixel

nearest point cable1 closest point of the center of pix on either
the steel line or data cable

pixel

1This parameter exists for x and y separately, i.e.: center of mass are 2 parameters.
2This parameter is parameter exits for red, blue, green and all colors separately.
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C Cluster Detection and Classification

C.2 Hotspots of the Detected Cluster in the Im-

ages

The distribution of clusters in the PMT-Spectrometer 2 module (Figure C.1) ex-
hibits similar hotspots as the PMT-Spectrometer 1 module (Figure 6.10), with
the exception that the cable is in a different location.

0 200 400 600 800
x [pixel]

0
200
400
600
800

1000
1200

y
[p

ix
el

]

15◦
30◦

45◦
60◦

Fo
V

cable

PMT-Spectrometer 2
22.04-31.12.2022

category:
cable
FoV
mounting

marker:
FoV module
next module
steel line
data cable

100

101

cl
us

te
r

co
un

t

Figure C.1: Cluster distribution of the cluster’s pixel center. Noise is mainly located
outside the module’s FoV where no light is expected. Only the accumulation in the
lower left enters the module’s FoV. Because the area of the cable is visible and bio-
luminescence emits light after mechanical stimulation, clusters in this area are from
bioluminescence with a high probability. All clusters within a 100 pixel are allocated to
the category bioluminescence. Supervised machine learning (ML) can train on the cam-
era noise outside the module’s FoV and bioluminescence clusters around the cables to
classify clusters across the entire image. Figure 6.10 shows the cluster captured by the
camera in the PMT-Spectrometer 2 module.

C.3 Feature Importance for the Machine Learning

Feature importance in a decision tree classifier is determined by the information
gain achieved by splitting on each feature. The higher the information gain, the
more important the feature is for classification [104]. Another technique for
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C.3. Feature Importance for the Machine Learning

assessing feature importance is mutual information, as shown in Figure 6.12.
Both techniques identify position-biased features that should be excluded from
the machine learning process.
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Figure C.2: Feature importance from a decision tree classifier [104]. The colors repre-
sent the three different sets of features provided to the decision tree classifiers. Gray
takes all listed features. Blue excludes all features within the group position. And green
excludes the position, noise and charge features.
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C Cluster Detection and Classification

C.4 Locations and Size of Predicted Clusters
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Figure C.3: Cluster location for clusters with a size ≥5 pixel and camera in the
PMT-Spectrometer 2 module, similar to Figure 6.15, which shows camera in the PMT-
Spectrometer 1 module. Absolute cluster count is plotted instead of density to highlight
the minimum number of clusters in certain areas. Plots in the same color show the same
data, where the lower row has marked FoV and cable areas which originate from Fig-
ure 5.7.
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C.4. Locations and Size of Predicted Clusters
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Figure C.4: 2D histogram of the cluster location for clusters with a size ≥4 pixel, simi-
lar to Figure C.5 and Figure 6.15, which use 6 or 5 pixel as threshold to train the neural
network (NN). Absolute cluster count is plotted instead of density to highlight the min-
imum number of clusters in certain areas. Plots in the same color show the same data,
where the lower row has marked FoV and cable areas which originate from Figure 5.7.
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Figure C.5: 2D histogram of the cluster location for clusters with a size ≥6 pixel, sim-
ilar to Figure C.4 and Figure 6.15, which use 4 or 5 pixel as threshold to train the NN.
Absolute cluster count is plotted instead of density to highlight the minimum number
of clusters in certain areas. Plots in the same color show the same data, where the lower
row has marked FoV and cable areas which originate from Figure 5.7.
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Figure C.6: Probability density function (PDF)s of the cluster locations depicting the
performance of the ML classification. The plot is similar to Figure 6.15 but the NN is
trained with clusters >4 pixel in size which improves the performance slightly.
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D Bioluminescence Catalog

The bioluminescence catalog from Latz, Frank, and Case (1988)[80] is a compre-
hensive reference for bioluminescent organisms in the ocean. During the April
1985 Biowatt cruise, the spectral characteristics of bioluminescence were mea-
sured using an OMA system in the western Sargasso Sea. The highest intensity
of bioluminescence emissions was observed in the blue region of the visible spec-
trum, specifically within the wavelength range of 440 nm–500 nm. Intraspecific
variability in spectra was observed in several species, and some species exhib-
ited dynamic color shifts. Measurements from independent samples of unsorted
plankton indicate that the spectral emissions of bioluminescence vary depend-
ing on the species assemblage [80]. Table D.1 lists the bioluminescence catalog
and Figure D.1 shows a visual representations of the catalog.

Table D.1: Spectral catalog for bioluminescence emissions. Data are from [80]. Visual-
izations of the catalog are in Figure 8.5 and Figure 8.9

Identification peak FWHM SN 2nd peak
[nm] [nm] [nm]

Unsorted plankton
mixed plankton 0 (333 µm1) 459 66 50
mixed plankton 1 (25 µm1) 474 40 66
mixed plankton 2 (25 µm1) 478 56 18
mixed plankton 3 (25 µm1) 484 62 24 472.0

Protozoa
Rhaphidozoum acuferum 458 87 28
A crosphaera murrayana 443 80 36
Siphonosphaera tenera 450 78 34
Myxosphaera coerulea 453 84 37
Collosphaera huxleyi 456 79 31

Table continued on next page
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D Bioluminescence Catalog

Table D.1 – continued from previous page

Identification peak FWHM SN 2nd peak
[nm] [nm] [nm]

Collosphaera TCM2 1 452 77 35
Collosphaera TCM2 2 445 87 71
Collosphaera SCM3 443 75 63

Coelenterata
Chrysaora hysosceles 478 95 67
Bougainvillia carolinensis 452 74 38
Pelagia noctiluca 469 94 32
Aeginea citrea 459 73 149
Pegantha clara 460 71 103
Pandea sp. nov. 466 80 94
Hippopodius hippopus 447 80 112
A galma okeni 444 70 94
Amphicaryon ernesti 487 47 144
Amphicaryon acaula 487 65 78
Diphyes dispar 464 92 25
Rosacea larva 488 55 90

Ctenophora
Cestum veneris 490 84 72
Tinerfe lactae 486 85 57
Beroe cucumis 479 94 52 496.0
Beroe ovata 478 86 51
Bolinopsis sp. 488 80 28

Mollusca
Phyllirrhoe sp. Leachia lemur 475 89 44
Leachia lemur 0 500 84 55 473.0
Leachia lemur 1 514 68 75 489.0
Leachia lemur 2 458 74 58 485.0
Leachia lemur 3 449 86 40 459.0
Pyroteuthis margaritifera 0 477 54 24
Pyroteuthis margaritifera 1 475 62 81
Pyroteuthis margaritifera 2 485 42 12 470.0

Annelida
Tomopteris nisseni 565 55 92

Crustacea
Conchoecia imbricata 474 94 47
Conchoecia secernenda 481 95 24
Scina sp. 444 89 38
Pleuromamma xiphias 492 77 117 472.0
Pleuromamma abdominalis 486 77 78 465.0
Gaussiaprinceps 479 73 38 489.0

Table continued on next page
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Table D.1 – continued from previous page

Identification peak FWHM SN 2nd peak
[nm] [nm] [nm]

Nematoscelis microps 463 43 77
Nematobrachionflexipes 453 32 32
Euphausia brevis 462 43 64
Euphausia gibboides 467 53 42
Oplophorus spinosus sp.4 457 69 133
Systellaspis debilis sp.4 460 65 73
Systellaspis debilis sp.5 467 48 38

Tunicata
Pyrosoma atlanticum 493 101 39 471.0

Pisces
Ultrastomias mirabilis 477 73 325
Hygophum hygomi 448 76 58
Stomias brevibarbatus 689 150 105

1Mesh size to collect the plankton
2TCM: Toroid colony morphology
3SCM: Spherical colony morphology
4Luminescent secretion
5Photphore emission

151



D Bioluminescence Catalog

0
50

in
te

si
ty

[a
.u

.]

Annelida

0
100

Coelenterata

050
100

Crustacea

0
50

in
te

si
ty

[a
.u

.]

Ctenophora

0
50

Mollusca

0
200

Pisces

400 600 800
wavelength [nm]

025
50

in
te

si
ty

[a
.u

.]

Protozoa

400 600 800
wavelength [nm]

0
20
40 Tunicata

400 600 800
wavelength [nm]

025
50

Unsorted plankton

Figure D.1: Visualization of the bioluminescence spectral catalog. Data are from [80]
and the emission spectra is modeled by a normal distribution. If a secondary peaks is
reported in a spectra, it is modeled with a normal distribution with 𝜎/20 and SN/10.
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E Water Flow Simulation and
Measurements

E.1 Flow Simulation Around Detector Compo-

nents

Simulating water flow with Solidworks provides valuable information about the
flow field around the cable and module. The simulation uses a CAD model of
the STRAW-b module, cable, and mounting components, but some parts are ex-
cluded for simplicity, such as the data cable. Figure E.1 and Figure E.2 show
the flow field while Figure E.3 and Figure E.4 show the gradient of the flow
field.
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Figure E.1: Water flow around module and cable for a velocity of 10 cms . The underlying
simulations was performed in Solidworks by Christian Spannfellner.
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Figure E.2: Water flow around module and cable for a velocity of 10 cms . The underlying
simulations was performed in Solidworks by Christian Spannfellner.
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E.1. Flow Simulation Around Detector Components
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Figure E.3: Water flow gradient around module and cable for a velocity of 10 cms . The
underlying simulations was performed in Solidworks by Christian Spannfellner.
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Figure E.4: Water flow gradient around module and cable for a velocity of 10 cms . The
underlying simulations was performed in Solidworks by Christian Spannfellner.
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E Water Flow Simulation and Measurements

E.2 Water Current and Module Heading

In Cascadia Basin, a currentmeter located around 2.5km away from STRAW and
STRAW-b detectors measures the flow speed close to the ground. The mag-
netic sensors in STRAW-b modules provide a heading direction similar to the
measured water flow. However, when flow speeds drop below 20 mms , the mod-
ule heading starts to decouple from the flow direction, as shown in Figure E.5
where data from the currentmeter and PMT-Spectrometer 1 for a 10-day period
are displayed.
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Figure E.5: Water flow measured by a currentmeter and magnetic heading of the mod-
ule. The magnetic heading aligns with the flow direction for currents above 20 mms .
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E.3. Module Oscillations from Vortex Streets

E.3 Module Oscillations from Vortex Streets

The modules experience vortex street oscillations downstream due to the in-
fluence of currents, as described in Section 8.4.2 and Section 8.4.3. Figure E.6
presents the linear detrended module heading during periods of significant os-
cillations, with amplitudes of up to 5◦.
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Figure E.6: Linear detrended module heading during periods of vortex street genera-
tion. The different periods are the same periods showed in Figure 8.14.
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Abbreviations

ADC analog to digital converter
ADCP acoustic Doppler current profiler
AOV angle of view
CMOS complementary metal-oxide-semiconductor
CPLD complex programmable logic device
DAQ data acquisition
DB data base
DCS distributed control system
PDF probability density function
DNA deoxyribonucleic acid
FoV field of view
FPGA Field-Programmable Gate Array
FWHM full width at half maximum
HDF5 Hierarchical Data Format
KM3NeT Cubic Kilometer Neutrino Telescope
LED light-emitting diode
MCTL master control software
MI mutual information
ML machine learning
MSB marine snow, sedimentation, and bio-fouling
NN neural network
ONC Ocean Networks Canada
PMT photomultiplier tube
POCAM Precision Optical Calibration Module
P-ONE Pacific Ocean Neutrino Experiment
ROV remotely operated underwater vehicle
sDOM STRAW Digital Optical Module
SPI serial peripheral interface
STRAW Strings for Absorption Length in Water
STRAW-b Strings for Absorption Length in Water b
TDC time-to-digital converter
ToT time-over-threshold
TRB Trigger Readout Board
UV ultraviolet
WOM Wavelength-shifting Optical Module
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