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Abstract

This thesis investigates advancements in point source analyses of neutrino data from Ice-

Cube, the world’s largest neutrino observatory, focusing on deep learning techniques to ap-

proximate intractable directional likelihoods. Neural ratio estimation (NRE) and neural pos-

terior estimation (NPE) were explored as new approaches for directly estimating likelihoods

from event-level data, bypassing traditional reconstruction steps. A general architecture was

developed using a pre-trained backbone model for feature extraction coupled with neural net-

works for likelihood or posterior estimation.

While NRE demonstrated near-perfect classification performance, the angular resolution re-

mained limited by feature extraction capabilities despite implementing various enhancement

strategies. NPE successfully approximated Bayesian posteriors but faced prohibitive infer-

ence times due to computational demands of integrating over a time-dependent vector field.

Applications to point source analysis and multi-messenger astronomy alerts produced plau-

sible likelihood contours directly from raw data, though the background events were still dom-

inant and effectiveness was constrained by angular resolution limitations and missing en-

ergy information. For alerts, likelihood regions inferred at machine learning speeds showed

promise but require further testing and optimization for real-time deployment.

In conclusion, this thesis demonstrates the feasibility of integrating deep learning into neutrino

astronomy workflows, achieving direct likelihood estimation from raw data while highlighting

the need for improved feature extraction models and faster inference techniques to realize the

full potential of these methods.
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1. Introduction

The night sky has long inspired curiosity and driven humanity’s quest to understand the uni-

verse. From mapping constellations to uncovering the nature of distant galaxies, the study of

the cosmos has evolved into a sophisticated scientific endeavor. Today, this exploration ex-

tends to extreme environments like the South Pole, where the IceCube Neutrino Observatory

is located. IceCube is a massive detector buried deep in the Antarctic ice, designed to study

neutrinos - nearly undetectable elementary particles that carry information from some of the

most energetic and distant events in the universe.

Neutrinos are unique because they carry no electric charge and only rarely interact with

matter, allowing them to travel vast distances without being absorbed or deflected. This

makes them valuable for studying astrophysical phenomena that are otherwise hidden from

view. By detecting these particles, IceCube provides insights into processes like exploding

stars, gamma-ray bursts, and black hole interactions.

This thesis addresses one of the key challenges in neutrino astronomy: identifying point

sources - specific locations in the sky where neutrinos originate. Traditional approaches

involve complex reconstruction steps and approximations that can be computationally de-

manding and limiting. This work explores how modern Machine Learning (ML) techniques

can simplify and enhance these analyses, offering new tools for extracting meaningful in-

sights directly from raw data.

The structure of this thesis is as follows: Chapter 2 sets the stage by introducing neutrino

physics and detection principles. Chapter 3 gives an overview over IceCube as well as the

current approach to point source analyses. Chapters 4 and 5 outline the principles of ML

and the deep learning framework GraphNeT used in this thesis. Chapter 6 presents the

likelihood-free methods that are being investigated, while Chapters 8 and 9 describe their

implementation, training and performance. Finally, Chapter 10 gives examples of how these

methods could be applied before Chapter 11 summarizes the findings and draws a conclu-

sion.
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2. Neutrino Physics

2.1. History of Neutrino Physics

The Standard Model of particle physics has achieved remarkable success in describing three

of the four fundamental forces: electromagnetic, weak, and strong interactions. However,

it excludes the relatively weak gravitational force. Within the Standard Model, elementary

particles are categorized into distinct classes based on their properties [1]. Among these,

the three neutral leptons interact solely via weak interactions. These particles were first

hypothesized in 1930 by Austrian physicist Wolfgang Pauli, who sought to explain the energy

spectra of electrons in beta decay. Later, Italian physicist Enrico Fermi named them neutrinos,

meaning "little neutral ones" [2]. The direct detection of neutrinos was not realized until 1956

by Clyde Cowan and Frederick Reines [2].

Subsequent discoveries revealed that neutrinos associated with muons (e.g., from pion de-

cays) differ from those linked to electrons (e.g., from beta decay). This led to the concept of

lepton families, which was further expanded with the discovery of the tau lepton in the 1970s

[2].

While neutrinos were initially thought to be massless, Bruno Pontecorvo, Ziro Maki, Masami

Nakagawa, and Shoichi Sakata, speculated during the 1950s and 1960s about the implica-

tions of non-zero neutrino mass [3]. They proposed that neutrinos might exhibit oscillations

analogous to K0-K0 mixing if flavor and mass eigenstates were not aligned [4]. In 1998, the

Super-Kamiokande experiment provided the first evidence for neutrino oscillations [5], a result

subsequently confirmed by other experiments [3]. This discovery implied a mass hierarchy

among neutrinos and demonstrated that the Standard Model is incomplete since it considers

neutrinos massless. It also resolved the long standing Solar Neutrino Problem, a large dis-

crepancy between measured and expected neutrino flux from the sun. Consequently, many

new questions about physics beyond the Standard Model arose and are yet to be answered

[3].

2.2. Neutrinos as Cosmic Multi-Messengers

Multi-messenger astronomy integrates traditional electromagnetic observations with studies

of cosmic rays, neutrinos, and gravitational waves. This interdisciplinary approach provides

deeper insights into astrophysical processes by leveraging the unique information carried by

each messenger [6].

Cosmic rays, primarily ionized nuclei such as protons and alpha particles, span a wide en-

ergy range. However, their exact sources remain uncertain due to magnetic field deflections
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that obscure their trajectories. In contrast, neutrinos are electrically neutral and interact only

weakly with matter. Thus, they directly point back to their sources, which are widely believed

to also be the sources of cosmic rays which in turn create astrophysical neutrinos through

proton interactions [7].

A pivotal moment in multi-messenger astronomy was the detection of neutrinos from Super-

nova 1987A. These neutrinos arrived hours before the supernova became optically visible,

confirming models of core-collapse supernovae where neutrinos escape before the explosion

reaches the stellar surface [6, 8]. The detection of solar and supernova neutrinos marked the

beginning of the field of neutrino astronomy [9], which has since expanded through numerous

experiments targeting diverse energy ranges and origins.

2.3. Cosmic Neutrino Sources
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Figure 1 Grand Unified Neutrino Spectrum. Image adapted from [10].

Figure 1 illustrates several models for neutrino fluxes across different energy scales. At high

energies, atmospheric neutrinos dominate. These are produced when cosmic rays interact

with atmospheric nuclei at high altitudes (∼15 km) [11]. Besides neutral π mesons, that will

induce an electromagnetic shower, such interactions primarily generate K and charged π

mesons that decay into muons and muon neutrinos (e.g. p+X → π+ → µ+ + νµ) and form

a hadronic shower. The muons subsequently decay into additional neutrinos and electrons

or positrons, which usually happens in the atmosphere. However, some high-energy muons

may also be able to reach the ground before decaying. As cosmic ray flux decreases rapidly

at higher energies, so does atmospheric neutrino flux [11].

Above 50TeV, astrophysical neutrinos dominate. The IceCube Neutrino Observatory has

Likelihood-free DL Techniques in Neutrino Astronomy 3



detected a diffuse flux of these high-energy neutrinos (Figure 1) [12]. This flux represents an

aggregate signal from all cosmic high-energy neutrino sources. Identifying individual sources

is challenging due to limited angular resolution and low fluxes at these energies. Notably, in

2017, IceCube linked high-energy neutrinos to a gamma-ray flare from blazar TXS 0506+056,

suggesting (jetted) Active Galactic Nuclei (AGNs) as potential sources of astrophysical neu-

trinos [13].

At ultra-high energies, cosmogenic neutrinos are expected from meson decays following in-

teractions between ultra-high-energy cosmic rays and photons from the Cosmic Microwave

Background (CMB) or extragalactic background light. In theory, this interaction sets a limit on

the energy of cosmic rays, which is called Greisen Ztsepin Kuzmin (GZK) limit. The detection

of neutrinos coming from these interactions remains elusive due to their low fluxes [14].

2.4. Detection Principles

Despite the vast number of extraterrestrial neutrinos reaching Earth every second, detecting

these particles remains a significant challenge due to their weak interaction with matter. Neu-

trino detectors are designed with large target masses to increase the probability of observing

interactions between neutrinos and the detector material.

For high-energy neutrinos, deep inelastic scattering of two types, neutral-current (NC) and

charged-current (CC), dominates interactions with matter. NC interactions are mediated by

the neutral Z0 boson, while CC interactions involve the exchange of charged W± bosons.

The primary interaction processes between high-energy neutrinos ν and nuclei X in the de-

tector material are as follows [7]:

νℓ + X −−→ ℓ + X (CC),

νℓ + X −−→ νℓ + X (NC),

where ℓ represents a lepton (electron, muon, or tau).

For both processes, the neutrino interacts with a single quark within the nucleus X, leading

to the disruption of the target nucleus and the generation of a hadronic shower. In CC inter-

actions involving muon neutrinos νµ, a muon is produced that travels through the detector,

creating a track-like signature. This track emits Cherenkov radiation when the muon moves

faster than the speed of light in the medium. Cherenkov photons result from the coherent

relaxation of atoms in the medium that were polarized by the charged particle [15]. These

tracks can either originate within the detector or enter it from surrounding materials. An ex-

ample track event is shown on the left in Figure 2.

In contrast, cascade events are produced by CC interactions of electron neutrinos νe and tau

Likelihood-free DL Techniques in Neutrino Astronomy 4



Figure 2 Event topologies recorded by the IceCube Neutrino Observatory. Spheres represent measured
charges at individual Digital Optical Modules (DOMs), with size proportional to charge magnitude and color
indicating detection time. Left: Track event from November 13, 2010, showing a muon traversing from left to
right. Right: High-energy cascade event from January 3, 2012, produced by a neutrino with estimated energy of
1.14 PeV. Credit: IceCube Collaboration

neutrinos ντ , as well as all NC interactions. These events generate hadronic cascades, and

for νe CC interactions, an additional forward electromagnetic cascade is formed. Cascades

have shorter characteristic lengths compared to tracks, resulting in lower angular resolution

but improved energy resolution for contained events since most of the neutrino’s energy is

deposited within the detector volume [7]. The topology of a cascade event can be seen on

the right in Figure 2.

2.5. Large-Volume Neutrino Experiments

For atmospheric and astrophysical neutrinos, expected neutrino fluxes decrease rapidly with

higher energies (see Figure 1). Consequently, large-volume neutrino observatories are nec-

essary to achieve sufficient target mass for detection. These observatories typically utilize

natural media such as water or ice to form detection volumes spanning hundreds of cubic

meters to even cubic kilometers.

The design of large-volume neutrino telescopes is usually very similar: long vertical mooring

lines equipped with DOMs are deployed into the medium. These optical modules detect the

Cherenkov radiation emitted from neutrino interactions. To minimize background noise from

atmospheric muons, detectors are positioned deep below the earth’s surface.

For high-energy telescopes like IceCube, key signatures are upgoing muon tracks since Earth

acts as a filter, blocking atmospheric muons while allowing astrophysical neutrinos to pass

through. However, at energies above 10 TeV, Earth becomes increasingly opaque to neutri-

nos due to their rising interaction cross-section. As a result, optimal acceptance of upgoing

tracks is limited to approximately 20–30 degrees above the telescope’s horizon [16].

To complement IceCube, several additional large-volume experiments are envisioned or un-
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der development, such as Baikal-GVD in Lake Baikal, Russia, KM3NeT in the Mediterranean

Sea and P-ONE in the Pacific Ocean. Combined, sensitivity to astrophysical neutrinos can

improve by up to two orders of magnitude depending on the declination and spectral index

[16]. A combined sensitive area covering nearly the entire sky is depicted in Figure 3, which

also illustrates reconstructed directions for detected neutrinos linked to blazar TXS 0506+056

and AGN NGC 1068.

Figure 3 The combined sensitive area of Planetary Neutrino Monitoring System (PLEnuM) will almost cover the
entire sky. The image also maps the reconstructed direction of the detected neutrinos that were linked to the
blazar TXS 0506+056 and the AGN NGC 1068. Image courtesy of L. Schumacher (TUM).

The focus of this thesis is on the IceCube Neutrino Observatory and new statistical methods

for making discoveries that link detected neutrinos to astrophysical sources. A detailed de-

scription of IceCube’s detector design and data analysis methodology will be provided in the

next chapter.
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3. The IceCube Neutrino Observatory

3.1. Research Mission

The IceCube Neutrino Observatory, situated at the Amundsen-Scott South Pole Station in

Antarctica, operates as a cubic-kilometer neutrino detector [17]. The current configuration

of the detector has been taking data for almost 14 years (full operations began on May 13,

2011). The facility is managed by an international collaboration of over 350 scientists from

58 institutions across 14 countries [18]. Its location at the geographic South Pole requires

specialized infrastructure and dedicated personnel for continuous operation in the polar envi-

ronment [19].

The observatory’s primary scientific objectives include the detection and study of high-energy

neutrinos from astrophysical sources, identification of cosmic ray accelerators, and explo-

ration of neutrino properties at energies beyond terrestrial accelerators [17]. Additional re-

search goals encompass neutrino oscillation studies and other searches for physics beyond

the Standard Model, including potential dark matter signatures [18]. As the biggest neutrino

observatory in the world, IceCube serves as a key component in multi-messenger astron-

omy, coordinating observations with gamma-ray, optical, X-ray, and gravitational wave facili-

ties [18].

3.2. Design

The IceCube detector comprises over 5,000 DOMs embedded in ultra-transparent glacial ice

at depths between 1,450 m and 2,450 m at the geographic South Pole [19]. Each DOM

houses a Photomultiplier Tube (PMT), onboard digitization electronics, and calibration light

sources. The modules are connected to vertical strings lowered into the ice via a hot-water

drilling technique designed to create holes more than two kilometers deep. These strings

are arranged on a hexagonal grid to achieve a cubic-kilometer detector volume. Additional

sensors in the denser DeepCore region allow for lower energy threshold studies, while IceTop

detectors at the surface measure cosmic-ray air showers up to EeV energies [19]. A scheme

of the detector can be found in Figure 4.

Prior to deployment, each DOM undergoes rigorous testing to ensure high reliability in the

harsh polar environment. Once installed, DOMs operate independently, while onboard trig-

gering and local coincidence logic filter spurious or isolated hits, reporting only relevant infor-

mation to the surface data acquisition system [19]. IceCube achieves uptimes of around 99%

and boasts over 98% of modules functioning successfully after many years of continuous

operation [19].

Likelihood-free DL Techniques in Neutrino Astronomy 7



Figure 4 Schematics of the IceCube Neutrino Observatory. It instruments a volume of roughly one cubic
kilometer of clear Antarctic ice at the South Pole. The observatory includes a densely instrumented subdetector,
DeepCore, and a surface air-shower array, IceTop. Credits: IceCube/NSF

Two major upgrades are planned to enhance IceCube’s capabilities. The IceCube Upgrade,

scheduled for 2025/2026, will deploy 750 advanced photodetectors and calibration devices

[20]. These improvements will enhance the detector’s sensitivity and angular resolution, with

benefits applicable to both new and existing data [20].

IceCube-Gen2 is envisioned to become the second phase of expansion. This upgrade would

increase the instrumented volume to approximately 8 cubic kilometers through 120 additional

strings with enhanced optical sensors. The project includes a 500 square kilometer surface

array and aims for a fivefold increase in sensitivity to astrophysical neutrinos [21]. However,

IceCube-Gen2 is yet to be funded and would need years of development and construction.

3.3. Research Results

The IceCube Neutrino Observatory has achieved several groundbreaking discoveries in neu-

trino astronomy. A key milestone was reached in 2013 with the first observation of a diffuse

flux of astrophysical neutrinos extending to PeV energies[12]. Recent analyses have suc-

cessfully identified several neutrino sources. The Seyfert galaxy NGC 1068 emerged as the

first steady neutrino source, detected at 4.2σ significance [18]. Additionally, the blazar TXS

Likelihood-free DL Techniques in Neutrino Astronomy 8



0506+056 was identified during a multi-messenger campaign, providing the first evidence for

neutrino emission coincident with a gamma-ray flaring event [13]. A significant milestone was

reached with the detection of neutrino emission from the Galactic Plane, raising questions

about the contribution of yet unknown cosmic-ray accelerators within our galaxy [18].

The observatory has expanded its reach to lower energies through novel detection tech-

niques. Using starting track events, IceCube has successfully measured the astrophysical

neutrino flux down to 3 TeV [22]. This achievement required sophisticated background rejec-

tion methods, as cosmic neutrinos are outnumbered by atmospheric backgrounds by almost

a factor of 1 billion to one (3000 Hz atmospheric background rate vs. 100 expected astro-

physical neutrinos per year) [22].

3.4. Directional Event Reconstruction

A big factors for the success of a large-scale particle experiment like IceCube is the event re-

construction. Event reconstruction bridges the gap between the raw signal that the detector

measures and the actual physical event in the detector that creates the measured detector

response. Based on the PMT photoelectron pulses and time stamps, the event reconstruction

of IceCube tries to estimate features like direction of the neutrino and energy. First simple

reconstructions are already happening during data processing stages in order to apply qual-

ity cuts to suppress background events in the data. After processing, more sophisticated

algorithms are used for the final reconstructions [23].

As described in Section 2.4, the different types of neutrino interactions create different pat-

terns in the detector response. The most important type of event for analyses that lead to

the discovery of point sources like NGC 1068 are CC νµ interactions. The muons produced

in these interactions create long track-like charge patterns that make accurate directional

reconstruction possible. While the muon’s trajectory does not precisely align with the origi-

nal neutrino direction, the mean kinematic opening angle ψ between the neutrino and muon

decreases at higher energies [24]:

ψ = 0.7 ◦
(

Eν

1TeV

)−0.7

(3.1)

This opening angle imposes a fundamental limit on the achievable angular resolution of any

reconstruction method, particularly at lower energies.

The reconstruction algorithm of choice for track-like events in IceCube is called SplineMPE.

This method calculates a likelihood function based on photon arrival time residuals in the

different DOMs. For that, a Monte Carlo photon propagation simulation creates time residual

Probability Density Functions (PDFs) for light sources at different locations and detector ori-
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entations [23]. These high-dimensional PDFs are interpolated by so called penalized basis

splines which pose as smooth and memory efficient representation of the PDFs [25].

While under ideal conditions, all photon hits at each DOM could be included in the likelihood

function. However, SplineMPE only incorporates first photon arrival times t1res,i. This is due

to the fact that PMT effects like late pulses or afterpulses have too much of a negative effect

on the accuracy of the "Multi Photo Electron (MPE)" likelihood function [23], which is defined

as

LMPE =

NDOMs∏
i

p(t1res,i|xi, H)

(∫ ∞

t1res,i

p(t|xi, H)dt

)Npulses,i−1

. (3.2)

In this equation, for every DOM at position xi, the likelihood of the first hit under the track

Hypothesis H , p(t1res,i|xi, H), is multiplied by the probability of subsequently measuring the

given number of additional pulses. To obtain the best fitting direction, the likelihood function

is maximized (usually by minimizing the negative log-likelihood for numerical stability). This

results in median angular resolutions of below 0.5 ◦ for TeV energies and above [23].

IceCube employs two primary methods to estimate the uncertainty of reconstructed event

directions, crucial for assessing the probability that an event originates from a specific loca-

tion, such as an astrophysical source: the Paraboloid algorithm and a multivariate estimation

method based on Boosted Decision Trees (BDTs). The Paraboloid algorithm approximates

the SplineMPE log-likelihood function around the best-fit position using a two-dimensional

parabola [23]. This approach assumes that the angular resolution follows a normal distribu-

tion around the true direction. To account for the kinematic angle ψ, an energy-dependent

correction factor estimated from the simulations shifts the median angular uncertainty. The

BDT method, on the other hand, uses 17 observables, including the Paraboloid angular un-

certainty and angular differences between different track reconstruction methods. The BDT

then approximates median angular separation between the reconstructed and true muon di-

rections, improving reliability, especially when the Paraboloid estimation fails [23].

3.5. Energy Reconstruction

The second most notable observable is the energy. It is crucial in distinguishing between

atmospheric and astrophysical events and in characterizing the energy spectrum of neutrino

sources, which could hint at the different mechanisms within the source that give the neutrinos

their energy. However, reconstructing the energy is a difficult task, because usually not the

whole muon track is fully contained in the detector (compared to a cascade event). For muon

energy reconstruction, IceCube employs multiple techniques. Either technique tries to find

the average energy loss per propagation length dE
dx , from which the muon energy can be
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inferred.

The Truncated Energy algorithm tries to mitigate the impact of PMT saturation. This approach

calculates energy losses for each DOM within a 60m radius of the track and excludes the

50% with the highest observed-to-expected pulse ratio. The energy losses of the remaining

DOMs is then averaged to find the estimated dE
dx . While high-energy events are typically well

reconstructed, the algorithm has problems with low-energy events, likely due to truncating an

already small number of pulses [23].

A second method is based on Dense Neural Networks (DNNs), which is a ML technique

further explained in Chapter 4.2. This technique leverages Artificial Intelligence (AI) to extract

energy information from various detector observables, showing enhanced performance at

lower energy levels. These networks take DOM pulse maps as input and utilize input features

such as the total charge and charge distribution to estimate the muon energy upon entering

the detector volume. By training on a large dataset and optimizing network parameters,

DNNs achieve energy resolutions that surpass traditional methods, particularly for events in

the lower energy range [23].

With emerging computational and ML techniques, event reconstruction in IceCube continues

to evolve. A tool that is being developed within the group is the python framework Graph-

NeT, which applies newest methods like Graph Neural Networks (GNNs) and transformer

networks to all kinds of reconstruction tasks. These methods leverage spatial and tempo-

ral relationships between detector signals to improve reconstruction accuracy and computa-

tional efficiency, particularly for low-energy events where traditional methods face challenges.

GraphNeT’s flexibility in handling irregular detector geometries and real-time processing ca-

pabilities positions it as a promising tool for future IceCube analyses and next-generation

neutrino telescopes like IceCube-Gen2. GraphNeT’s approach will be described in detail in

Chapter 5.

3.6. Point source analyses in Neutrino Astronomy

Obtaining the results described in Chapter 3.3 was only possible through advanced methods

of statistical inference. This chapter aims to describe the process of unbinned maximum

likelihood analyses which are widely used for the search of neutrino emission from point-like

sources like NGC 1068 and TXS 0506+056 [23].

Point-like neutrino sources are thought to create clusters of astrophysical events against the

atmospheric neutrinos and diffuse astrophysical background [23]. When analyzing detected

events, the point-source search method compares two scenarios, also called hypotheses,

through the frequentist approach of likelihood ratio tests. The null hypothesis H0 defined

by the set of parameters θ0 postulates that observed events consist solely of atmospheric

neutrinos and diffuse astrophysical background. In contrast, the alternative hypothesis H1

Likelihood-free DL Techniques in Neutrino Astronomy 11



with the parameters θs incorporates an additional component from a point source at celes-

tial coordinates (right ascension αs, declination δs), emitting neutrinos with energy spectrum

Φ(E) = Φ0E
−γ [23].

Under the Neyman-Pearson lemma, the most powerful Test Statistic (TS) for distinguishing

θ0 from alternative hypotheses is the likelihood ratio test statistic Λ [26]:

Λ(x) =
supθ∈θ0

L(θ|x)
supθ∈θs

L(θ|x)
. (3.3)

Here, the supremum is taken over all parameters that describe each hypothesis. In order

to evaluate this TS, the unbinned likelihood L(θ|x) has to be found. For a given set of

parameters θ and observed data x, it is defined as

L(θ|x) =
∏
i

f(xi|θ), (3.4)

in which the product over the PDFs f(xi|θ) for all observations xi is taken [23].

For point source analyses in neutrino astronomy, the parameters θ0 for the background-only

hypothesis are fixed by the atmospheric and astrophysical diffuse event rates [23]. The signal

hypothesis is described by a set of four free parameters θs = (αs, δs,Φ0, γ), in which spatial

information of the source are incorporated via right ascension αs and declination δs, and in-

formation regarding the energy spectrum of the source are incorporated via flux normalization

Φ0 and spectral index γ. While γ depends on the mechanisms with which a source gives the

neutrinos their energy, Φ0 is dependent on the total expected number of signal events ns via

the event rate equation [23]:

ns = T

∫ ∞

0
dEνAeff(Eν , δs)× ϕ0(Eν). (3.5)

This equation incorporates the exposure time T , the effective area of the detector for the

source location Aeff as well as the flux normalization Φ0 and integrates over all neutrino

energies Eν to obtain the expected number of signal events ns. Given a background flux,

the same can be done for the expected number of background events nb. This can be used

to extend the likelihood function by creating a mixture model of signal PDF fs(x|θs) and

background PDF fb(x|θ0) weighted by the expected number of signal and background events

[23]:

L(ns, γ|x) =
(ns + nb)

N

N !
e−(ns+nb)

N∏
i=1

[
ns

ns + nb
fs(xi|θs) +

nb
ns + nb

fb(xi|θ0)

]
. (3.6)

The term in the beginning of the equation describes a Poisson distribution with a mean at the

total number of expected events, i.e. ns + nb. As described in [27], the likelihood function

can be extended like this to account for statistical fluctuations in the total number of observed

events. The formulation of the likelihood reduces to the background-only hypothesis for ns =
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0, which shows that the two hypothesis that are being tested in a point-source analysis are

nested. This fact validates Wilks’ theorem, which states that for large N → ∞, two times

the negative logarithm of the likelihood-ratio (3.3) assuming the null-hypothesis to be true

asymptotically approaches a χ2 distribution [23]. The degrees of freedom ndof of the χ2

distribution equals the difference between the number of free parameters in both hypothesis,

which in our case is ndof = 2. This arises from the fact that we are evaluating a specific point

in the sky, i.e. a fixed right ascension and declination, while in the signal hypothesis the flux

normalization Φ0 (or similarly the number of signal events ns) and spectral index γ remain

free parameters. This fact helps in assigning the obtained TS a significance which makes the

results of the hypothesis tests interpretable. Putting all of this together, the TS typically used

in these point source analyses reads [23]

TS = −2 log

[
L(ns = 0)

supns,γ L(ns, γ)

]
. (3.7)

At the heart of this TS are the PDFs for both background and signal. They are based on the

events’ reconstructed energy and direction. Accurately modeling them is crucial for distin-

guishing potential astrophysical sources from background noise. The signal PDF, fs(xi|θs),

describes the probability of observing an event with characteristics xi (reconstructed direc-

tion, energy, angular uncertainty) given a source with right ascension αs, declination δs and

spectral index γ. It often appears factorized into a spatial and energy term. The background

PDF, fb(xi), represents the expected distribution of atmospheric neutrinos and other back-

ground events, typically modeled as independent of right ascension due to the detectors

location at the South Pole and the inherited detector symmetry over long periods of time

[23].

Analytically constructing these PDFs is exceedingly difficult due to complex detector effects

and energy-dependent angular resolution. Traditional methods used Gaussian approxima-

tions for the spatial term, but modern analyses employ multidimensional Kernel Density Esti-

mation (KDE) to better capture non-Gaussian tails and the dependence on the spectral index

γ and the reconstructed energy [23]. KDEs estimate the PDF directly from Monte Carlo sim-

ulations without the need for assumptions about the data distribution. It does so by sampling

and weighting a large set of simulated events for a given range of spectral indices. A KDE

approximation is then fitted to the corresponding Monte Carlo distributions in order to model

the spatial and the energy term of the signal PDF for each spectral index γ. These KDE

based PDFs provide a more accurate representation of the signal and background distribu-

tions, leading to improved sensitivity and discovery potential, especially at lower energies and

for softer energy spectra [23].

The modeling of the PDFs plays a key role in the success of statistical data analyses for

experiments like IceCube. This thesis aims to explore further methods to construct the PDFs

and subsequently the likelihood functions for these type of analyses. The methods are based

Likelihood-free DL Techniques in Neutrino Astronomy 13



on ML techniques and aim to leverage the advantages that AI models can bring, such as

fast and flexible inference and an amortization of initial simulation and training. The term

"likelihood-free" stems from the fact that no explicit construction of the likelihood function has

to be performed.

The next chapters give an overview over the fundamentals of ML, before introducing the

Deep Learning library for neutrino astronomy called GraphNeT. GraphNeT will be used to

implement the likelihood-free methods described in Chapter 6. Afterwards, the actual im-

plementations as well as the process of training the methods will be described, before the

methods are tested example alert events and a pseudo dataset from a source similar to NGC

1068.
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4. Machine Learning

4.1. Basic Principles of Machine Learning

ML is a sub-field of AI dedicated to creating algorithms capable of automatically learning pat-

terns from data, with minimal explicit human instruction. Instead of following static rules, ML

models utilize mathematical optimization techniques to refine their parameters and enhance

predictions over time.

In principle, ML aims to map inputs - such as images, text sequences, or sensor signals -

to outputs that for example can be labels, real-valued predictions, or latent structures. For

that, a ML model takes the input or a representation of the input and applies (often times

non-linear) mathematical operations that aim to return the desired output.

For a ML model to being able to do that, it usually has to be trained on examples, which

is a fundamental part in ML. Typically, two main frameworks of learning (and combinations

of those) are being used. The distinction lies within whether the training data is labeled, i.e.

whether there is a known ground truth label for each training data input. If that is not the case,

unsupervised learning methods such as clustering or feature learning can be used to learn

intrinsic patterns in the given data. Supervised learning on the other hand has access to the

target labels and can therefore compare the output of the ML model with the desired output

for that training example [28].

In many cases, the objective of a ML model that has been trained by supervised learning can

be categorized into the two main branches, classification and regression [28]. In classification,

the model is trained to assign inputs to one of several predefined categories. An example

would be labeling images as containing "cats" or "dogs". Classification tasks often measure

performance using metrics such as accuracy, precision, and recall, reflecting how reliably the

model places instances in correct classes. In regression, the model predicts a continuous-

valued output. Typical scenarios include forecasting stock prices, estimating temperature, or

predicting real-valued sensor readings. Here, performance can be measured by calculating

the deviation from the true numeric values.

Whether the task is classification or regression, loss functions quantify how far off the model’s

predictions are from the desired labels or targets. The choice of loss function directly impacts

a model’s training dynamics and final performance, as the training algorithm tries to minimize

this loss function by adjusting the model’s parameters [28].

For classification, a common loss function is the cross-entropy loss, also known as the logistic

loss or softmax loss [28]. Suppose the label is given by a one-hot vector y and the model’s
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predicted probabilities are ŷ. The cross-entropy loss for a single example is:

LCE(y, ŷ) = −
∑
i

yi log(ŷi), (4.1)

where ŷi is the predicted probability for class i. Minimizing cross-entropy encourages the

model to assign high probability to the correct class and low probability to incorrect classes.

For regression, a frequently used loss function is the Mean Squared Error (MSE) [28]. Let t

be the true continuous value and t̂ be the model’s prediction. The MSE for a single example

is

LMSE(t, t̂) =
1

2
(t− t̂)2. (4.2)

The factor of 1
2 is often included for convenience when taking derivatives. Minimizing MSE

drives the model to reduce the squared difference between the true value and its prediction

across all training examples [28].

A critical challenge in ML is balancing model complexity to navigate the bias-variance trade-

off, manifesting as either overfitting or underfitting. Overfitting occurs when a model learns the

training data too precisely, including random noise, leading to poor generalization to new, un-

seen data. Underfitting arises when the model is too simple to capture the underlying patterns

in the dataset. Methods such as cross-validation, L1 or L2 regularization, and systematic hy-

perparameter tuning help mitigate these issues [28]. While these algorithmic approaches

provide essential regularization, the most reliable foundation for robust learning remains a

sufficiently large, well-balanced training dataset with good data quality that comprehensively

samples the input space and edge cases [28].

4.2. Deep Learning

Deep Learning is a specialized sub field of ML that leverages neural networks with multi-

ple layers, known as DNNs, to automatically learn complex representations of data. Unlike

traditional ML models that often require manual feature engineering or extraction, deep learn-

ing models can learn features on different levels of abstractions directly from raw input data

[29].

At the core of deep learning are artificial neurons, which are the building blocks of neural

networks. An artificial neuron computes a weighted sum of its inputs x based on a weight

vector w, adds a bias term b, and then applies an activation function σ to introduce non-

linearity [28]:

y = σ (w · x+ b) . (4.3)
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A Multilayer Perceptron (MLP) consists of multiple layers of such neurons arranged in a feed-

forward manner. Each layer transforms the input data into higher-level abstractions, enabling

the network to model complex relationships [29].

Activation functions are critical in neural networks as they introduce non-linearity, enabling the

network to learn and model complex patterns. Without activation functions, multiple layers

would effectively collapse into a single linear transformation, limiting the network’s expres-

siveness.

A common activation function is the sigmoid function defined as

σ(x) =
1

1 + e−x
, (4.4)

which maps inputs to a range between 0 and 1. While historically popular, it can suffer from

vanishing gradients, making it less effective for deep networks [28].

More popular nowadays is the Rectified Linear Unit (ReLU), expressed as

ReLU(x) = max(0, x). (4.5)

ReLU is computationally efficient and has become the default activation function in many

deep learning architectures due to its ability to mitigate the vanishing gradient problem [29].

However, it can suffer from the dying ReLU problem, which occurs when neurons consistently

output zero for all inputs. In this case, the gradient for that neuron will always be zero, so the

neuron effectively "died" because it cannot recover during training [30]. To mitigate this issue,

modified versions of the ReLU function have emerged, like Leaky ReLU [29]:

LeakyReLU(x) = max(α · x, x), (4.6)

in which α is a constant factor between 0 and 1 (usually around α = 0.01). Leaky ReLU

allows a small, non-zero gradient for negative inputs, which prevents neurons from becoming

completely inactive.

Training deep neural networks involves adjusting the weights and biases to minimize a loss

function that measures the discrepancy between the model’s predictions and the actual tar-

gets. The primary algorithm used for this purpose is backpropagation, which efficiently com-

putes the gradient of the loss function with respect to each parameter in the network [29].

The before mentioned problem of vanishing gradients occurs when gradients become expo-

nentially small during backpropagation through deep networks. This happens primarily due

to activation functions with bounded derivatives and the multiplicative nature of the chain rule,

resulting in earlier network layers receiving negligible parameter updates and thus failing to

learn.
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The training process typically follows these steps [29]:

1. Forward Pass: Input data is passed through the network layer by layer, computing

activations at each neuron to generate the final output.

2. Loss Computation: The loss function, such as mean squared error for regression or

cross-entropy loss for classification, quantifies the prediction error.

3. Backward Pass: Gradients of the loss with respect to each parameter are computed

using the chain rule of calculus. This step propagates the error backward through the

network.

4. Parameter Update: Optimizers like Adam1 adjust the network’s parameters in the di-

rection that minimizes the loss.

This iterative process continues until the model converges to a minimum of the loss function

or meets predefined stopping criteria.

Beyond the MLPs, several specialized neural network architectures have been developed to

handle different types of data and tasks effectively. Convolutional Neural Networks (CNNs)

are tailored for processing grid-like data such as images and can capture local spatial hierar-

chies while reducing the number of parameters and improving computational efficiency [31].

The architecture of CNNs typically consists of convolutional layers, pooling layers, and fully

connected layers. Convolutional layers apply filters to detect features, pooling layers reduce

spatial dimensions, and fully connected layers perform high-level reasoning. This structure

allows CNNs to automatically learn hierarchical representations of visual data, making them

particularly effective for tasks such as image classification, object detection, and image seg-

mentation [31].

GNNs are a class of neural networks designed to operate on graph-structured data, where in-

formation is represented as nodes and edges. GNNs can capture complex relationships and

dependencies between entities in a graph, making them particularly useful for tasks involv-

ing relational data [32]. The key idea behind GNNs is message passing, where each node

aggregates information from its neighbors to update its representation. This process allows

GNNs to learn both local and global graph properties. Applications of GNNs include social

network analysis, recommender systems, molecular property prediction, and protein folding

prediction as demonstrated by AlphaFold [33]. GNNs have shown good performance in tasks

where the relationships between entities are as important as the entities themselves.

Recurrent Neural Networks (RNNs) are designed for sequential data, like time series or lan-

guage, by maintaining a hidden state that captures information from previous time steps.

Advanced variants like Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)

1 Adam documentation can be found here.
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address issues like vanishing gradients, enabling the modeling of long-range dependencies

[34]. The key feature of RNNs is their ability to process sequences of varying lengths and

maintain context across time steps. This makes them particularly suitable for tasks such as

natural language processing, speech recognition, and time series forecasting. LSTMs, for in-

stance, introduce a memory cell and gating mechanisms to control information flow, allowing

the network to learn when to remember or forget information over long sequences [34].

In recent years however, so called Transformers emerged and surpassed the performance

of RNNs. Transformers utilize attention mechanisms to process entire sequences in parallel,

significantly improving scalability and performance on tasks such as language translation

and text generation. Architectures like BERT and GPT are prominent examples [35]. The

core innovation of Transformers is the self-attention mechanism, which allows the model to

weigh the importance of different parts of the input when processing each element. This

approach eliminates the need for sequential processing, enabling more efficient training on

large datasets. Transformers have revolutionized natural language processing, achieving

state-of-the-art performance on a wide range of tasks including machine translation, text

summarization, and question answering [35].

Likelihood-free DL Techniques in Neutrino Astronomy 19



5. GraphNeT: A Deep Learning Framework for
Neutrino Physics

5.1. Introduction

With the advancements in ML in recent years, also science and physics have stepped into a

new era leveraging advanced computational techniques. Within astroparticle physics, Graph-

NeT has emerged as an open-source deep learning library specifically designed for neu-

trino telescope applications [36]. This chapter explores the architecture, implementation, and

applications of GraphNeT, and describes how a public data science competition helped im-

proving state of the art reconstruction models. Afterwards, it is used as the framework to

implement the likelihood-free deep learning techniques.

5.2. Library Architecture

GraphNeT’s architecture is built around several key components to provide a comprehen-

sive solution for neutrino physics applications. At the heart of the library is the DataConverter

functionality, which employs a reader-writer scheme to handle experiment-specific file formats

and transform them into standardized representations suitable for the GraphNeT framework

[36]. All that has to be defined is a method to read and extract the data from the given exper-

iment files for the DataConverter to transform the data to a supported backend. Additionally,

GraphNeT requires a Detector class containing a geometry table of the sensors, standardiza-

tion functions that map the specific raw data into numerical ranges suitable for deep learning,

and a list of names of the relevant columns of the data tables. This approach allows for easy

handling of diverse data sources and ensures that the library can adapt to new experimen-

tal setups with minimal modifications while also facilitating the transfer of models between

different neutrino detectors [36].

GraphNeT’s Model component adheres to three core ideals: self-containment (portable func-

tionality requiring only raw data inputs), summarizability (fully exportable configurations for

reproducibility), and reusability (cross-experiment adaptability) [36]. The framework provides

a generic Model class supporting diverse deep learning paradigms — from GNNs to Trans-

formers — while enabling modular component replacement. The flexibility is provided through

pytorch lightning’s LightningModule which the Model class inherits. For most applications, the

StandardModel subclass structures workflows through three key components: the GraphDef-

inition, which handles the detector geometry and graph construction via Detector, NodeDef-

inition, and EdgeDefinition modules, the Backbone, which defines the neural architecture

like GNN or transformer, and the Task, which consists of problem-specific output layers and

loss functions [36]. The GraphDefinition isolates detector-specific details, allowing physics-
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agnostic feature extraction through the Backbone. For example, replacing IceCube’s Detec-

tor module with KM3NeT’s preserves core functionality while adapting to new geometries

[36]. The Task component maps latent representations to physical quantities like energy or

direction, supporting supervised tasks through configurable loss functions. Lastly, models

are saved as configuration files and trained weights, facilitating deployment in reconstruction

pipelines and collaboration across experiments [36].

5.3. DynEdge Architecture

The DynEdge architecture forms the foundation of GraphNeT’s reconstruction capabilities

for low-energy neutrino events in IceCube, employing an innovative implementation of the

EdgeConv graph convolution operator [32]. This operator generalizes traditional convolution

to irregular graph structures by processing node features through learned relationships be-

tween spatially connected detector elements.

At its core, EdgeConv operates on k-nearest neighbor graphs where nodes represent individ-

ual PMT pulses. For each node nj with features xj , the operator computes:

x̃j =
k∑

i=1

MLP (xj ,xj − xi) (5.1)

where the MLP processes both the node’s features and its relative differences with neighbor-

ing nodes ni [32]. This formulation enables feature learning that combines absolute detector

coordinates with relative spatial-temporal relationships between pulses.

DynEdge enhances this operator through four sequential EdgeConv blocks with dynamic

edge updates. The DynEdge architecture employs a dynamic graph connectivity approach

where each convolutional block recalculates the k-nearest neighbors in the evolving latent fea-

ture space. This continuous re-evaluation of node relationships enables the network to adap-

tively learn optimal connectivity patterns tailored for successive processing stages, effectively

capturing both local and global event characteristics as feature representations evolve [32].

The feature hierarchy follows a progressive abstraction paradigm, with initial EdgeConv blocks

processing raw detector geometry features Dxyz, temporal information t, and charge mea-

surements q. Subsequent layers operate on increasingly abstract latent representations, en-

abling hierarchical feature learning that transitions from concrete detector-level observations

to physics-relevant pattern recognition [32]. To preserve information from each level of ab-

straction, node features from all four EdgeConv blocks undergo concatenation prior to final

pooling operations, ensuring the model retains both fine-grained, local details from early pro-

cessing stages and high-level, global abstractions from deeper layers [32].
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Figure 5 A schematic representation of the DynEdge architecture. The diagram shows a simplified "Input
Graph" visualization, followed by "State Graphs" that demonstrate the evolution of node positions and
connectivity patterns after EdgeConv operations. Taken from [32] with R. Ørsøe’s permission.

In addition to the EdgeConv blocks, two methods have been implemented to further enhance

the architecture’s performance. First, five global statistics are calculated and injected – in-

cluding homophily ratios of spatial-temporal correlations and total pulse counts – directly into

node feature vectors, providing environmental context for interpreting local detector signals

[32]. Second, the adaptive pooling scheme after concatenation of the outputs of the dif-

ferent EdgeConv blocks employs four parallel aggregation operations (minimum, maximum,

mean, and summation) across node features, which adds characterization of the distributed

pulse information through summary statistics [32]. This also helps in removing the need for

zero-padding of the input data and allows for the data to effectively contain any number of

pulses.

As shown in [32], this design achieves 13-20% improvement in resolution of energy, direction

and interaction vertex reconstruction compared to traditional maximum likelihood methods for

1-30 GeV neutrinos. The dynamic edge updates prove particularly effective for low-energy

events where static geometric neighborhoods fail to capture essential light propagation pat-

terns in Antarctic ice.

5.4. Kaggle competition

In early 2023, the IceCube collaboration hosted a data science competition on the competition

platform Kaggle. The competition tasked participants with reconstructing neutrino directions

from Cherenkov radiation signals detected by IceCube’s 5,160 DOMs [37]. The dataset in-

cluded 140 million simulated neutrino events spanning 100 GeV–100 PeV, with mixed event

types (67% cascades, 33% tracks) and raw pulse data containing spatial coordinates, time,

charge, and local coincidence status (see Section 3.2). Submissions were evaluated on the
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mean opening angle between predicted and true neutrino directions. Over 800 teams sub-

mitted 11,206 solutions, with the top three demonstrating significant improvements over the

baseline model’s score provided by the organizers. The baseline was a simple DynEdge

model trained on less than 8% of the competition data without further optimization [37] using

a special von Mises-Fisher loss function [38].

The winning solution combined GNNs with Transformers to leverage geometric and sequen-

tial relationships in the data. Their architecture used modified EdgeConv layers that pro-

cessed both absolute node features (xj) and relative differences (xj − xi) between neigh-

boring pulses, followed by transformer blocks with multi-head attention [37]. Key innovations

included static edge selection (k-NN computed only once per event) and a hybrid loss function

combining angular distance with von Mises-Fisher loss. The model employed mixed-precision

training and sequence bucketing to handle long pulse sequences efficiently. A stacking en-

semble of six variants achieved a private leaderboard score of 0.960, which translates into

the mean opening angle taken over the evaluation dataset being roughly 5.7% smaller than

for predictions from the DynEdge baseline model.

The second-place solution focused on transformer architectures and enhanced them with

physics-informed components. The team introduced Fourier encoding to embed continuous

variables (e.g., time, charge) into high-dimensional representations using 10, 0002j/d frequen-

cies, improving sensitivity to small input variations [37]. A custom Minkowski attention bias

incorporated spacetime intervals (ds2 = c2dt2 − dx2 − dy2 − dz2) to weight pulse relation-

ships. The architecture also used a DynEdge-inspired encoder and integrated ice properties

(scattering/absorption lengths) as global context. Training utilized stochastic weight averag-

ing and cosine annealing learning rate, with models scaling from 7.5M to 116M parameters.

The solution achieved superior track reconstruction, reaching angular resolutions below 0.5◦

for events above 10 TeV [37].

The third-place team implemented a hybrid classification-regression approach using Trans-

formers and gradient boosting. A transformer backbone processed pulse sequences, pro-

ducing embeddings that were average-pooled and fed into dual prediction heads: a 128-

bin classifier for zenith/azimuth angles and a regression head for 3D direction vectors [37].

Engineered features (e.g., first-pulse timing, DOM quantum efficiency) and transformer em-

beddings were combined using a BDT for final predictions. The model employed two-phase

training, in which training on the classification task was followed by the regression task. This

approach excelled at high-energy cascades, achieving resolutions below 5◦ for events above

10 TeV [37].

All solutions outperformed the standard DynEdge reconstruction model, with the top entries

achieving resolutions comparable to IceCube’s state-of-the-art reconstructions, especially for

cascade events. Transformers demonstrated that they could boost the performance com-

pared to just using GNNs, though their quadratic complexity limited applicability to very long
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pulse sequences. The competition highlighted the potential of physics-informed architectures

and large-scale training for neutrino astronomy, paving the way for real-time analysis pipelines

in future IceCube upgrades.

The success of deep learning models in neutrino astronomy underscores the transformative

potential of data-driven approaches in extracting meaningful insights from complex detector

responses. It opens new possibilities for tackling challenges in particle physics, particularly

challenges that come from the intractability of likelihood functions. New simulation-based

methods that leverage deep learning to approximate the likelihood/ Bayesian posterior will be

introduced in the next chapter.
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6. Likelihood-free Methods

6.1. Statistical Background

Traditional statistical inference operates within two primary paradigms: frequentist hypothesis

testing and Bayesian inference.

In the frequentist framework, which for example is being used in classical point source anal-

yses in IceCube (see Section 3.6), hypothesis testing evaluates competing models through

the profile-likelihood ratio test statistic:

Λ(x) =
L(θ0|x)

supθ L(θ|x)
, (6.1)

where θ0 represents the null hypothesis. Under the Neyman-Pearson lemma, Λ(x) is the

most powerful test statistic for distinguishing θ0 from alternatives [26]. Rejection regions are

constructed based on the asymptotic distribution of −2 lnΛ(x), which follows a χ2 distribution

[23].

In contrast, bayesian methods update prior beliefs p(θ) through Bayes’ theorem [39]:

p(θ|x) = p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)∫

θ p(x|θ
′)p(θ′) dθ′ . (6.2)

The posterior p(θ|x) encodes parameter uncertainties, while the denominator (evidence) nor-

malizes the distribution.

Both methods rely fundamentally on the likelihood function L(θ|x) ∝ p(x|θ), which quanti-

fies the probability of observing data x given parameters θ. However, the likelihood function

becomes intractable for many large-scale physics experiments like IceCube due to three fun-

damental challenges emerging from their scale and detection principles [26]. First, these

detectors generate high-dimensional observations - from particle trajectories in tracking sys-

tems to energy depositions in calorimeters. A single interaction might produce O(103) corre-

lated signals with nanosecond timing precision, creating event representations in RN where

N ∼ 103 − 105. Second, many of the physical processes observed are of stochastic na-

ture. Particle interactions involve latent variables like shower development, decay chains, and

secondary particle production. These follow quantum mechanical probabilities and material-

dependent processes (e.g., bremsstrahlung, hadronization). Third, the detector response

adds additional complexity and stochastic nature. In the case of a large-scale neutrino tele-

scope, this includes quantum efficiencies, angular acceptance variations across PMTs, and

electronic noise thresholds. All these uncertainties create a probability space that includes

billions of possible photon paths and sensor activation patterns, which in theory all have to
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be taken into account to analytically construct the likelihood. This is not possible with current

methods, making the likelihood intractable.

In order to overcome the problem of intractability, approaches to approximate the likelihoods

have come up. They are mainly based on summary statistics that are used to compare ob-

served and data coming from a sophisticated simulator. One prevalent technique is called

Approximate Bayesian Computation (ABC), in which observed and simulated data are com-

pared using some distance measure ρ which is based on the summary statistics [26]. In

general, a simulator is run with parameters θ drawn from the prior. If the simulated data

xsim p(·|θ) is sufficiently close to the data, i.e. ρ(xsim,xobs) < ϵ, θ is kept as a sample of an

approximate version of the posterior distribution. In theory, smaller ϵ makes ABC more ex-

act. However, it also makes the acceptance probability smaller, which means that many more

simulations are required to approximate the posterior. Because the observed data directly

influences the rejection process, this whole algorithm has to be repeated for new observa-

tions, making ABC best-suited for cases with at most a few data points [26]. The frequentist

pendants to this method are called (kernel) density estimation methods, which are used to

approximate the distribution of different summary statistics from samples generated by the

simulator [26]. As described in Section 3.6, it is also used in IceCube point source analy-

ses. These methods are amortized, meaning that after an initial computational cost of the

simulation and subsequent density estimation, new data points can be evaluated efficiently.

Therefore, in contrast to ABC, this method works well for a large number of observations,

which is often the case in particle physics experiments [26].

Both methods are fundamentally constrained by the curse of dimensionality [26]. As the

complexity of observed data (e.g., high-dimensional sensor readouts in neutrino detectors)

increases, the computational cost of simulations grows significantly, in the worst case even

exponentially. To mitigate this problems, the data x is reduced to low-dimensional summary

statistics. However, the accuracy of the inference depends critically on how well these sum-

mary statistics retain relevant information. Historically, the design of the summary statistics

has relied heavily on domain expertise, where physicists manually engineer statistics based

on their insights into the underlying processes [26]. While this approach has enabled progress

in fields like neutrino astronomy and cosmology, it introduces subjectivity and risks discarding

valuable information embedded in the full data structure.

With the rise of AI and deep learning, new methods have come up that tackle these problems.

By training neural networks on simulator outputs, more or even full event information (e.g., raw

PMT hit patterns through a model like DynEdge) could be used to approximate the likelihood

while enabling amortized inference. Additionally, this inference can happen in ML speeds,

which could help in giving real-time multi-messenger alerts. The next two sections describe

the methods used to approximate the likelihood-to-evidence ratio as well as the posterior.
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6.2. Neural Ratio Estimation (NRE)

Neural Ratio Estimation (NRE) addresses the intractability of explicit likelihood evaluation

through a clever application of binary classification theory [26]. The method uses a dataset

D = {(θi,xi)} where parameters θ and observations x are drawn either from the joint dis-

tribution p(θ,x) (positive class) or from the product of marginals p(θ)p(x) (negative class).

Practically, this can be achieved by keeping data, generated by a forward simulator, as is for

the positive class, while the negative class is constructed by randomly permuting parameters

θ across different observations x from the dataset. This shuffling process breaks the joint

correlation between parameters and data while preserving their marginal distributions p(θ)

and p(x). A classifier d(x,θ) is then trained to distinguish the positive and the negative class

via binary cross-entropy loss [40]:

L = −Ep(θ,x)[log d(x,θ)]− Ep(θ)p(x)[log(1− d(x,θ))]. (6.3)

As shown in [41], the optimal classifier d∗ under this loss satisfies:

d∗(x,θ) =
p(x,θ)

p(x,θ) + p(x)p(θ)
. (6.4)

Rearranging yields the likelihood-to-evidence ratio r(x,θ):

d∗(x,θ)

1− d∗(x,θ)
=

p(x,θ)

p(x)p(θ)
=
p(x|θ)
p(x)

= r(x,θ) (6.5)

A classifier that is trained to distinguish the two classes therefore ouputs something which

can be formulated to an estimation of the likelihood-to-evidence ratio. All that is needed is

data from a sophisticated forward simulation, which usually exists for complex experiments in

particle physics. Therefore, this method requires no further assumptions or approximations

beyond those already used in the simulation. The better the simulation and the classifier,

the better the approximation of the likelihood-to-evidence ratio. Additionally, the classifier can

take any form, which means that newest methods in AI and deep learning can be leveraged

to build a classifier that takes high-dimensional event data without the need to formulate

low-dimensional summary statistics, making this method an appealing approach to counter

problems arising in the traditional methods.

6.3. Neural Posterior Estimation (NPE)

Neural Posterior Estimation (NPE) directly approximates the posterior distribution p(θ|x) via

(conditional) neural density estimation. Unlike traditional sampling-based methods, NPE
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amortizes inference by training a parametric model q(θ|x) on simulations generated from the

joint distribution p(θ,x) = p(x|θ)p(θ). This bypasses explicit likelihood evaluations, making

it suitable for stochastic simulators with intractable likelihoods [39, 42].

The core objective is to train the model by minimizing the following loss function [43]

LNPE = Eθ∼p(θ)Ex∼p(x|θ) [− log q(θ|x)] , (6.6)

in which training pairs (θn,xn) are generated by sampling θn from the prior p(θ) and running

a simulator xn ∼ p(x|θn).

NPE typically employs (conditional) Discrete Normalizing Flows (DNFs) to model q(θ|x). A

DNF transforms a simple base distribution q0(θ0) (e.g., Gaussian) through a sequence of

invertible, autoregressive layers {fi,x} which are conditional on the observation (indicated by

the subscript x) [43]:

ϕx = fN,x ◦ · · · ◦ f1,x, q(θ|x) = q0
(
ϕ−1
x (θ)

) ∣∣∣∣det ∂ϕ−1
x (θ)

∂θ

∣∣∣∣ . (6.7)

The Jacobian determinant in Equation 6.7 originates from the change of variables theorem,

compensating for volume distortions caused by each invertible transformation fi,x [43]. This

term ensures conservation of probability mass, guaranteeing that q(θ|x) remains a valid prob-

ability density satisfying
∫
q(θ|x) dθ = 1 [43]. For easy and quick evaluation that is computa-

tionally feasible, a normalizing flow should have a simple Jacobian determinant. Usually the

Jacobian is kept as a triangular matrix, restricting the choice of transformations fi,x that can

be used.

While DNFs have proven effective for neural posterior estimation, they impose architectural

constraints that limit flexibility. Continuous Normalizing Flows (CNFs) overcome these limita-

tions by modeling the transformation from base to target distribution as a continuous process

governed by an Ordinary Differential Equation (ODE).

In the CNF framework, we define a time-dependent vector field v that describes how samples

move from the base distribution to the target distribution. This vector field is parametrized by

a neural network and can be described by the ODE

dθt

dt
= vt,x(θt), (6.8)

where θt represents the state of the sample at time t ∈ [0, 1]. The initial condition θ0 is

drawn from a simple base distribution q0(θ) (typically a standard Gaussian), and the solution

at t = 1 yields a sample from the target distribution q(θ|x). To move the samples from the
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base distribution to the target distribution, the vector field has to be integrated over time t,

typically by using a standard ODE solver [43].

To explicitly evaluate the density q(θ|x), we must account for how probability mass transforms

along the flow. This is governed by the continuity equation [43]

∂qt,x(θt)

∂t
+∇ ·

(
qt,x(θt) · vt,x(θt)

)
= 0, (6.9)

which ensures probability mass conservation. Solving this equation yields the target distribu-

tion [43]

q(θ|x) = q1(θ1|x) = q0(θ0) · exp
(
−
∫ 1

0
∇ · vt,x(θt) dt

)
. (6.10)

In principle, training CNFs by directly maximizing the likelihood similar to the DNF is possible.

However, it is computationally expensive due to the need to integrate the divergence term in

every training step [43]. Flow Matching (FM) offers an elegant alternative by directly regress-

ing the vector field v onto a target vector field u, bypassing explicit likelihood calculations.

The idea of FM is to construct a time-dependent probability path pt(θ|θ1) that smoothly inter-

polates between the base distribution at t = 0 and a narrow distribution centered at the target

parameter θ1 at t = 1 [43]. The probability paths and therefore the target vector field can

be chosen sample-conditionally, which means that the target ut for a given training sample x

depends on the corresponding truth value θ1. For this case, it was shown in [44] that there

are some simple choices for the target vector field u that make the regression equivalent to

likelihood maximization.

A common choice is the vector field

ut(θ|θ1) =
θ1 − (1− σmin)θ

1− (1− σmin)t
(6.11)

that yields Gaussian probability paths [43]

pt(θ|θ1) = N
(
θ1, t, (1− (1− σmin)t)

2 · Id
)
. (6.12)

where σmin is the standard deviation of the Gaussian distribution around our target parameters

θ1. Training on many θ1 and their corresponding target vector fields ut(θ|θ1) lets our vector

field vt,x(θ) transform the base distribution into the target distribution.
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The FM loss function minimizes the expected L2 distance between the predicted vector field

v and the target velocity u [43]:

LFM = Et∼p(t)Eθ1∼p(θ)Ex∼p(x|θ1)Eθt∼pt(θt|θ1)

[
∥vt,x(θt)− ut(θt|θ1)∥2

]
, (6.13)

where the expectation is taken over the time t, the target parameters θ1 sampled from the

prior p(θ), the observation x coming from a simulator and the intermediate states θt sampled

from the probability path pt(θt|θ1).

In practice, the training procedure for each sample proceeds as follows [43]:

1. Sample a parameter θ1 ∼ p(θ) and generate the corresponding observation x ∼
p(x|θ1) (or pick a (θ1,x) pair from a pre-generated training dataset)

2. Sample a time point t ∈ [0, 1] (e.g. from uniform distribution)

3. Sample an intermediate state θt ∼ pt(θ|θ1)

4. Compute the target vector field ut(θt|θ1)

5. Evaluate the predicted vector field vt,x(θt)

6. Update the model parameters to minimize the squared error between v and u

After training, the posterior for a given θ can be evaluated by conditioning the vector field v

on the observable x and solving equation 6.10.

The primary advantage of CNFs is their architectural flexibility. By eliminating the need for

invertible layers with triangular Jacobians, CNFs enable unrestricted neural network designs

that can better capture complex posterior distributions. This flexibility translates to improved

scalability, as CNFs avoid layer-wise memory bottlenecks and support deeper architectures,

resulting in approximately 3× faster training than comparable DNFs [43]. Additionally, CNFs

exhibit a valuable mass-covering property that conservatively covers regions of non-zero pos-

terior density [43].

Despite their advantages, CNFs come with notable limitations that create trade-offs in their

practical application. The most significant drawback is the substantially increased inference

cost compared to DNFs. While CNFs avoid explicit Jacobian determinant calculations during

training, density evaluation still requires integrating the divergence of the vector field ∇·v over

time t. This integration adds computational overhead that cannot be avoided when precise

density values are needed and might be a limiting factor when inference speed is essential

[43].
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7. Pre-training Dynedge Backbone

The general idea that will be discussed in this thesis is to use a deep learning pipeline that

goes directly from raw event data to a spatial likelihood representation for each event, skipping

the steps of reconstructing point estimates, approximating uncertainties and fitting KDEs.

This chapter will describe the steps that have been performed in order to pre-train a DynEdge

backbone model, which will be the first component of the pipeline the observable passes

through:

Observable → Backbone → NRE/NPE → Ratio/Posterior.

The backbone acts as a feature extractor that gives a latent representation of the original

event level pulse data. This latent representation should contain all the important informa-

tion for the task at hand and will be the input into the NRE and NPE networks. For this

application, the DynEdge architecture presents an advantageous solution due to its ability to

process input sequences of varying lengths while producing a latent representation with a

fixed dimensionality. The next sections explore the data the models are trained on as well as

the structure and the pre-training of the DynEdge backbone.

7.1. Training data

The dataset used in this thesis contains only simulated track events that SplineMPE recon-

structed within the northern sky. In total, the dataset contains 6,341,248 final level events,

meaning the data went through all the IceCube processing stages. One of the biggest chal-

lenges this data (neutrino telescope data in general) represents is the fact that each event

can contain a vastly different amount of pulses. They can vary between dozens and tens

of thousands of pulses, as Figure 6 shows. Every pulse contains the euclidean position of

the DOM that captured the pulse, the charge it induced as well as the time the pulse was

measured.

In this thesis, a cut is being made at a pulse count of 1024, only using events with fewer

pulses. This way, more than 98% of the events in the dataset are being utilized while inher-

ently limiting the memory consumption in our model training. Although the data that is being

discarded represents only a small fraction of the total dataset, its removal can still introduce

a bias to the remaining data. Specifically, events with a high number of pulses are being ex-

cluded. These events typically correspond to higher-energy neutrinos, which produce more

photons and subsequently result in more pulses in the recorded data. Importantly, such

events also tend to offer the best directional reconstruction because the increased number

of pulses provides richer information about the track’s geometry and direction. This makes

them highly valuable for analyses requiring precise localization.
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Figure 6 Histogram of the pulse counts of each of the 6,341,248 events in the training dataset. The red dashed
line indicates the cut at 1,024 pulses that is being made.

However, excluding these events is necessary due to computational constraints. The large

number of pulses significantly increases the sequence length of the input data, which poses

challenges for the DynEdge model architecture. GNNs are well-suited for processing variable-

length and structured data, but their computational complexity scales with the size of the input

graph. For events with exceptionally high pulse counts, this scaling can lead to memory over-

flow or prohibitively long inference times. By applying a pulse cut at 1024 pulses, we ensure

that the model remains computationally efficient and can process events within reasonable

timeframes.

Although this approach limits the inclusion of high-pulse events with superior directional infor-

mation, it reflects an active trade-off to ensure computational feasibility. Additionally, excluding

these events makes training more challenging by forcing the model to learn from less infor-

mative data, potentially improving robustness. Ongoing research into efficient architectures

and data representation aims to make processing high-pulse events more feasible without

compromising performance or efficiency.

The remaining dataset contains neutrino events with an uniform true azimuth distribution. The

true zenith distribution is mostly limited to the northern sky but has some outliers due to bad

reconstruction via SplineMPE. The true neutrino energy is distributed within 100 GeV and

500 PeV with a peak around 1 TeV, as the histograms in Figure 7 show. During training, no

weights have been applied.

7.2. Training the Backbone model

In order to let DynEdge extract the features that contain as much information about the di-

rection of the original neutrino as possible, the model is being trained as a regression model

that predicts azimuth and zenith. This is one of the main purposes that DynEdge was original

developed for. In this case, the DynEdge model is instantiated with its default parameters

as described in [32]. The corresponding architecture can be seen in Figure 5 in Section 5.3.
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Figure 7 Histograms of true azimuth, cosine of the zenith and the neutrino energy of each of the 6,341,248
events in the full dataset. The final training dataset containing 6,221,963 events is colored in blue.

Most notably, the EdgeConv blocks work on the 8 nearest neighbors and the global pool-

ing scheme includes minimum, maximum, mean and summation. In total, this architecture

contains 1.4 million trainable parameters.

The regression task is trained using the von Mises-Fisher loss that was also used for the

baseline model in the Kaggle competition (see Section 5.4). The loss funtion utilizes the

von Mises-Fisher distribution, which is considered the directional equivalent to a Gaussian

distribution, mapping the Gaussian to a spherical embedding. It is scaled by κ, which is a

measure of how broad or narrow the distribution is. For low κ approaching zero, the von

Mises-Fisher distribution will be distributed evenly on the directional sphere. For κ = inf, the

distribution will be a point distribution at the target direction. The idea is during training to not

only predict the direction but also κ as a type of an uncertainty estimate. The predicted κ

will then define a von Mises-Fisher distribution around the target direction. The loss function

is then the negative logarithm of this distribution evaluated at the predicted direction [38].

Including the uncertainty into the prediction proved to be useful, especially when the overall

goal is to approximate something like the directional likelihood, which is very much dependent

on how confident we are in reconstructing the direction for a given event.

Before training, the training dataset is split into a dataset which actually trains the model and

a dataset which validates the training after each epoch by calculating the loss for this unseen

dataset. The chosen ratio for the split is 9:1. The model is being trained using a batch size

of 800. The batch size indicates the number of events in the subset of data that is being

used in one training step. Each step updates the parameters of the model according to the

gradients of the combined loss of the batch. The learning rate, which scales the gradients,

is scheduled using PyTorch’s ReduceLROnPlateau1 learning rate scheduler. It monitors the

loss of the validation dataset after each epoch and reduces the learning rate by a factor of 0.3

if the validation loss has not decreased within 3 epochs. The starting learning rate is set to

0.001 and the optimizer of choice is Adam with standard parameters. To prevent overfitting,

1 ReduceLROnPlateau documentation can be found here.
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an early stopping mechanism is implemented, which stops the training if the validation loss

has not decreased in 7 epochs.

7.3. Performance of the pre-trained model
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Figure 8 Performance of the DynEdge backbone model and the traditional SplineMPE method in terms of
opening angle between point prediction and truth. In the background, the grey histogram represents the events
that are being evaluated. These events come from a different dataset that the model has not been trained on.
The uncertainty bands come from bootstrapping and represent the 95% bands. Plotted in orange is the mean
kinematic angle between neutrino and muon, which represents a lower bound for the resolution of the
reconstruction.

In Figure 8, the performance of the model is being shown. The ∼ 1 million evaluation events

are not part of the training dataset and are therefore unseen by the model. However, they

stem from a dataset which has similar azimuth, zenith and energy distributions as the training

dataset as well as a pulse cut at 1,024 pulses. The energy histogram of the evaluation events

is shown as the gray background in the figure. The evaluation metric is the opening angle

between the point prediction and truth. For each energy bin, the DynEdge median as well as

the SplineMPE median are shown.

The uncertainty bands come from a method called bootstrapping [45]. In this method, for

each bin, 1,000 bootstrap samples are generated by repeatedly sampling with replacement

from the original data within that bin. The evaluation metrics are then calculated for each

bootstrap sample, resulting in a distribution of each metric. From these distributions, the

2.5th and 97.5th percentiles are determined, representing the boundaries of the 95% con-

fidence interval for each bin’s metrics, and therefore providing a measure of the associated

uncertainty.

For low neutrino energy, the DynEdge model has more problems in reconstructing the direc-

tion than for higher energies. This is expected due to the kinematic angle between parent

neutrino and resulting muon. For lower energies, the kinematic angle is quite large, adding

Likelihood-free DL Techniques in Neutrino Astronomy 34



randomness to the direction of the muon which can not be overcome. For energies above 105

GeV, this angle is close to zero and does not have a big effect on the reconstruction capabil-

ities anymore. From here on, the resolution is limited by the method itself only. The median

opening angle sits slightly above 1 degree and stays nearly constant for the whole energy

range above 105 GeV. However, the median opening angle for the SplineMPE reconstruction

method is significantly smaller for the whole regime.

The DynEdge performance is comparable to other studies that have been done with similar

architectures (e.g. in [37]). While this proves that the model is capable of extracting informa-

tion about the direction of the neutrino, it should be noted that for these type of events and

this energy range, it is not the best deep learning based method for directional reconstruction.

The Kaggle solutions proved to beat this performance [37]. However, the DynEdge model is

still used as the backbone for the likelihood-free methods, because it is a much lighter model

in terms of computational cost. This allows for faster training and inference, making it a good

backbone for testing the methods and proving their concept.
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8. NRE Model Development

This chapter focuses on the development of models for NRE as described in chapter 6. The

fundamental approach involves training a classifier to differentiate between data from cor-

related observation-direction pairs p(x, θ) and uncorrelated, scrambled pairs p(x)p(θ). An

optimal classifier subsequently yields a formulation of the likelihood-to-evidence ratio, quanti-

fying the probability that a direction θ and an observation x correspond to each other.

8.1. Basic NRE

8.1.1. Architecture and Training

Pretrained
DynEdge

Discriminator

Observable

Feature
extractor

Latent 
observable

NRE
network

Likelihood 
to evidence
ratio

Direction

Figure 9 The base architecture for the NRE method. The observed pulsemap will go through DynEdge to
generate a latent representation of the observable. This is then concatenated with the direction and put through
the discriminator, which then gives yields the likelihood to evidence ratio.

The architecture of the basic NRE model described in this thesis can be seen in Figure 9. The

observable x, which in this case is the pulsemap of a neutrino event, will be put through the

backbone of the pre-trained DynEdge model from Chapter 7. All parameters of the backbone

are frozen during training, meaning the loss function will not change the backbone model.

The prediction head of the angular regression task of the DynEdge model is discarded. The

DynEdge backbone used in this architecture therefore outputs a 128 dimensional latent repre-

sentation x̃ of our observable from which the backbone model is able to regress the direction

and the uncertainty.

At this stage, the latent representation is concatenated with the direction of our interest. The
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direction is also represented in euclidean coordinates to account for the nature of the sphere.

In the azimuthal direction, 0 and 2π represent the same azimuth. However, a standard MLP

without special embeddings does not inherently account for this equivalence and may in-

correctly interpret these directions as being significantly different. Euclidean coordinates, in

which each direction will be represented as a 3 dimensional point on the unit sphere, solve

this problem. The concatenated (x̃,θ) pairs are now put through the Discriminator network.

The Discriminator consists of a simple MLP with 10 hidden layers, leaky ReLU activation

functions and roughly 480,000 trainable parameters. It predicts a one dimensional output.

During training, the output of the last linear layer of the Discriminator will be pushed through

a Sigmoid function (see 4.1) to predict the class of the observable direction pair (x,θ), 0 for

the uncorrelated pairs and 1 for the correlated pairs. For the final likelihood to evidence ratio

inference, we can skip the Sigmoid function and directly apply the exponential function on the

output of the last linear layer d of the MLP:

p(x|θ)
p(x)

=
d∗

1− d∗
=

1
1+e−d

1− 1
1+e−d

= ed, (8.1)

in which d∗ represents the output after the Sigmoid function for an optimal classifier (see

equation 6.5).

For training, the dataset from Chapter 7 is utilized. This dataset is duplicated, with one copy

labeled as class 1, where each event’s true direction is used as θ. The other copy is labeled

as class 0, where the directions are randomly permuted across all events in the dataset. At

the start of each training epoch, a new permutation is performed to introduce variability and

prevent overfitting to specific direction assignments. As before, the data is split into a training

and validation set with a split ratio of 9:1. The batch size is set to 500. The learning rate

scheduler ReduceLROnPlateau is being utilized, in this case reducing the learning rate by a

factor of 0.1 if the validation loss has not decreased within 4 epochs. The starting learning

rate is set to 0.001 and the optimizer is Adam with standard parameters. An early stopping

mechanism is implemented with a patience of 10 epochs. The loss function in use is the

binary cross entropy (see equation 6.3), as our general task is a binary classification.

8.1.2. Classification Performance
To assess the capabilities of this model, both the performance of the classification on which

the model is being trained as well as the performance of the actual likelihood to evidence

ratio approximation can be analyzed. For this evaluation of the classification performance, 1

million events from the same unseen dataset from 7.3 are utilized.

First, the raw output distribution of the discriminator is examined. The left plot in Figure 10

shows histograms of the model’s Sigmoid outputs for both true classes 0 and 1. This visu-

alization reveals the model’s ability to separate the two classes. Ideally, predictions for true

positive examples should cluster near 1, while predictions for true negative examples should
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Figure 10 Left: Output distributions of the basic NRE classifier for both classes. Right: Calibration curve which
indicates how well the classifier output resembles an actual probability.

cluster near 0. The degree of overlap between these distributions provides an immediate vi-

sual indication of classification performance — less overlap suggests better discrimination. In

this case, the distributions look as expected. The model demonstrates strong class separa-

tion, as both classes cluster at their respective end of the prediction spectrum. The overlaps

are small, indicating that our model trained well on this task of discriminating between corre-

lated and uncorrelated observable-direction pairs.

The right plot in Figure 10 is the so called calibration curve or reliability diagram [46]. It

consists of the ratio of true positive predictions to all predictions across different prediction

scores. For this classifier, the ratio is well alligned with the ideal diagonal line, indicating

that our classifier performs equally well for both classes across the entire prediction range.

The absence of systematic deviations from the diagonal suggests that our model maintains

consistent accuracy across different prediction regimes. It also means that the classifier’s

output can be interpreted as the probability with which the given observable-direction comes

from the joint distribution p(x, θ). This is a notable strength, as it indicates that the classifier

can be trusted equally well whether it’s making high- or low-confidence predictions. It shows

that the model is well balanced and does not favor one class over the other in any of the

prediction regimes.

For a more comprehensive metric to capture the models classification performance we can

turn to the so called Receiver Operating Characteristic (ROC) curve. The y-axis depicts the

True Positive Rate (TPR)

TPR =
True Positive

True Positive + False Negative
, (8.2)

which describes the number of true predictions for samples with the underlying true class 1

divided by the number of all samples with underlying true class 1. The x-axis contains the
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Figure 11 ROC curve for the basic NRE classifier. The curve plots the TPR against the FPR at various threshold
settings.

corresponding False Positive Rate (FPR)

FPR =
False Positive

False Positive + True Negative
, (8.3)

which gives the ratio of the number of false predictions for samples with underlying true class

0 and the number of all samples with underlying true class 0. The TPR and FPR pairs

are calculated for different decision thresholds that divide the output of the classifier in the

predicted classes 0 and 1. Usually, setting the best threshold for a classifier consists of a

trade-off between a high TPR and a low FPR. The ROC curve visualizes this trade-off and

therefore depicts how confidently a classifier predicts the class and how well it can actually

do it. To quantify this, the Area Under Curve (AUC) metric is often times used, which, as the

name suggests, is the value of the integral of the ROC curve. An AUC of 1 would indicate a

perfect classifier that outputs for all samples with underlying true class 1 the highest value in

the prediction range.

Figure 11 shows the ROC curve for our this NRE model. The curve’s proximity to the top-left

corner of the plot confirms the strong separation capability already observed in the prediction

distributions. Our model achieves an AUC of 0.99844, which is almost a perfect AUC and

which confirms the good discriminative power of our model.

8.1.3. Likelihood Approximation Performance
After establishing the excellent classification capabilities of our NRE model, we now evaluate

its performance as a likelihood estimator for directional reconstruction. Therefore, we want

to measure its ability to accurately recover the true neutrino direction as well as its ability to

estimate the confidence of its prediction. This part of the evaluation is performed for 100,000

random events from the evaluation dataset described in Section 7.3.
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Figure 12 Coverage plot for the basic NRE model. The coverage is evaluated based on 100,000 evaluation
events. Ideal coverage, i.e. empirical coverage which exactly matches the coverage given by the χ2 distribution
with 2 degrees of freedom, is given by the dashed line.

A crucial aspect of evaluating our likelihood approximation is its coverage property — whether

confidence regions contain the true neutrino direction at the expected rate. For a well-

calibrated model, a 90% confidence region should contain the true direction in 90% of cases.

We assess coverage using Wilks’ theorem, which relates likelihood ratios to the χ2 distribu-

tion (see Section 3.6). First, we identify the maximum likelihood direction by evaluating our

model over a directional grid. Then, we can compute the test statistic −2∆ logL between

this maximum and the true direction. This is repeated for the whole evaluation dataset, which

gives us a distribution of test statistics that in theory should match the χ2 distribution with

two degrees of freedom. To check this property, the cumulative distribution function of our

empirical test statistics is plotted against the theoretical χ2 cumulative distributions. This can

be seen in Figure 12.

This analysis reveals almost perfect coverage properties, with the empirical distribution follow-

ing almost exactly the diagonal line that indicates ideal coverage. This agreement indicates

that our NRE model indeed produces properly calibrated likelihoods across all confidence

levels. Figure 14 shows these likelihood contours for three example events with their topolo-

gies illustrated in Figure 13. The model actually finds a direction close to the truth and draws

plausible likelihood contours. However, for these three examples we can already see that the

maximum likelihood estimate from our NRE model is much further away from the truth than

the Spline MPE directional point estimate.

To fully assess the resolution, we compute the opening angle between the maximum likeli-

hood direction predicted by our model and the true neutrino direction. Because the backbone

is pre-trained and does all the relevant feature extraction, we expect the performance to be

roughly as good as the pre-trained model.
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Figure 13 Topologies of the three simulated example events. The spheres represent measured charges at
individual DOMs, with size proportional to charge magnitude and color indicating detection time. The true
direction of the parent neutrinos are indicated by the red line.
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Figure 14 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.
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Figure 15 Performance of the NRE model in terms of opening angle between point prediction and truth. This
plot shows the 16th, 50th and 84th percentile for each energy bin. In the background, the grey histogram
represents the events that are being evaluated. These events come from a different dataset that the model has
not been trained on. The uncertainty bands come from bootstrapping and represent the 95% bands.

Figure 15 shows that the resolution of our model is worse than the resolution of the pre-

trained model for all energies and all three percentiles. This might be due to the fact that

the training objective differs between the pre-trained model and our NRE approach. The pre-

trained model was optimized directly for point estimation of direction, whereas our NRE model

is trained to approximate likelihoods. This difference in optimization criteria could explain the

slight degradation in point prediction performance, which would then come as a trade-off for

accurate approximation of the likelihoods.

While the degradation may appear relatively minor, it was not anticipated. It also further

highlights the broader challenge that deep learning-based directional reconstruction meth-

ods often underperform compared to traditional methods for high-energy tracks. Therefore,

various strategies have been tried to mitigate this problem, including changing the discrim-

inator architecture, unfreezing the backbone parameters or parts of it during training, using

different learning rates and learning rate schedulers as well as training the whole model

including the backbone from scratch. While some strategies may have helped with faster

convergence or slight improvements of the angular resolution, the angular resolution of the

pre-trained DynEdge model was never reached. Because of that, a few new approaches

apart from hyperparameter optimization have been tested, which will be described in the next

sections.
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8.2. von Mises-Fisher Sampling

As demonstrated in Section 8.1.2, the classifier performs well on the classification task it

was trained on. However, one potential concern is that the training task may have been too

simplistic, allowing the classifier to achieve high performance without needing to precisely

distinguish between the true and randomly permuted directions. This could lead to a loss

of precision during training. To address this, the approach is adjusted by obtaining class 0

directions not by permutation, but instead by sampling from a von Mises-Fisher distribution

(see Section 7.2) centered around the true direction. This increases the density of samples

near the truth, effectively making the task more challenging and encouraging the classifier to

achieve finer discrimination between true and sampled directions. The parameter κ can then

be used to control how easy or how difficult the classification task should be, as the density

distributions show in Figure 16.

= 0.5 = 7 = 100

Figure 16 3-dimensional von Mises-Fisher distributions for different κ. The higher the κ, the more concentrated
the distribution around the central direction of the distribution µ.

8.2.1. Architecture and Training
The architecture is the same as depicted in Figure 9. The observed pulsemap will go through

the same pre-trained DynEdge model, before it gets concatenated with the direction and fed

into the discriminator network. The only difference is the direction for the uncorrelated class

0, which does not come from permutations but from a von Mises-Fisher distribution around

the truth.

The training is done analogous to the training described in Section 8.1.1. The von Mises-

Fisher sampling is only applied to the training dataset, for validation of class 0 we keep the

random shuffling of the directons. For class 0 samples, the loss weights during training are

defined as the ratio between the probability density of the sample’s direction under the von

Mises-Fisher distribution and the corresponding probability density in the training dataset

distribution. This weighting ensures that the original directional distribution is preserved.

For this model, an additional parameter, κ, must be configured for training. The best results

were obtained by gradually increasing κ over the course of training, with its value scheduled to
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Figure 17 Left: The Sigmoid output distributions of the classifier trained using von Mises-Fisher sampling. As
expected, the distributions are highest at their respective target value. Right: The calibration curve for this
model. The diagonal line indicates a perfectly weighted classifier. In this case, there is a slight imbalance which
indicates that the classifier has more difficulty in classifying samples from the uncorrelated class 0.

grow with each epoch. As a result, the von Mises-Fisher distribution used to sample directions

for the uncorrelated class becomes progressively narrower, making the classification task

increasingly challenging as training progresses. The κ is initially set to 0.5 (see left plot in

Figure 16) and increases by 0.1 every epoch.

8.2.2. Classification Performance
Like before, we want to measure the capabilities of our model by both assessing the classifi-

cation performance and the likelihood approximation performance. The same unseen dataset

as before is being used and the class 0 values are created with random shuffling like for vali-

dation.

First, we look at the raw classification output again. It is shown in the left plot in Figure 17.

As before, the visualization shows that the model is able to effectively distinguish between

the classes. However, when turning to the calibration curve on the right, a slight imbalance is

visible, which shows that the classifier has more difficulty in classifying samples from class 1

than from class 0. This might be explained due to the different nature of the class 0 samples

during training and evaluation. While during training, the observables are matched with direc-

tions rather close to the true direction, during validation and also this evaluation, the matching

is conducted the same way as before by shuffling all the directions in the training dataset. The

model therefore has an easier task in classifying shuffled class 0 samples during evaluation,

while for class 1 samples the uncertainty stays the same as during training.

Figure 18 shows the ROC curve for this model. The model achieves an AUC of 0.9972, which

is slighly lower than the AUC of the basic DynEdge NRE model, but still very close to 1,

indicating almost perfect classification. The slightly lower AUC might also be explained by the

difference of the class 0 dataset during training and evaluation.
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Figure 18 ROC curve for the vMF classifier. The curve shows the TPR against the FPR at various threshold
settings.

8.2.3. Likelihood Approximation Performance
Figure 19 illustrates the coverage properties of the von Mises-Fisher NRE model. The cover-

age aligns closely with the ideal behavior at lower confidence levels but exhibits slight over-

confidence at higher confidence levels, where the true direction is contained less frequently

than the indicated confidence level suggests. Nonetheless, the overall coverage demon-

strates good agreement with Wilks’ theorem, supporting the interpretation of the model output

as an estimate of the likelihood-to-evidence ratio.

The contours for the same three example events as before can be seen in Figure 20. The truth

is contained within the 90% contour for all three events. When comparing with the contours

of the basic NRE model in Figure 14, the contour sizes seem to be comparable. For actual

comparison of the resolution, the opening angle between maximum likelihood direction and

true direction should be considered.

The opening angle is presented in Figure 21. While the overall performance remains worse

than the pre-trained DynEdge model, the use of von Mises-Fisher sampling has reduced

the disparity. While this represents an improvement, the achieved resolution still falls short

of the initially expected level, which was to match the resolution of the pre-trained model.

Furthermore, the pure classification performance appears to be slightly worse. Although this

only has a small impact on the model, it could become significant in different settings. If this

issue becomes too pronounced, one potential mitigation strategy could be to combine von

Mises-Fisher sampling with the original direction-shuffling approach.
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Figure 19 Coverage plot for the vMF model. The coverage is evaluated based on 100,000 evaluation events.
Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is given by the dashed line.
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Figure 20 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.
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Figure 21 Performance of the von Mises-Fisher model in terms of opening angle between point prediction and
truth. This plot shows the 16th, 50th, and 84th percentile for each energy bin. In the background, the grey
histogram represents the events being evaluated.
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8.3. Sequential NRE

Another approach tested in this thesis is called Sequential NRE. The general idea is to in-

crease the performance by training a sequence of models in which each model refines the

predictions of the previous model. It does so by reweighting the samples from the uncorre-

lated class 0 that come from p(x)p(θ) with the likelihood to evidence ratio r̂n−1 predicted by

the previous model:

p(x)p(θ) · r̂n−1 = p(x)p(θ) · pn−1(x|θ)
p(x)

= pn−1(x,θ). (8.4)

The classifier now has the task to distinguish between the true joint p(x,θ) and the joint as

predicted by the first model pn−1(x,θ). An optimal classifier d∗ therefore outputs

d∗(x,θ) =
p(x,θ)

p(x,θ) + pn−1(x,θ)
, (8.5)

which can be rearranged to

d∗(x,θ)

1− d∗(x,θ)
=

p(x,θ)

pn−1(x,θ)
=

p(x|θ)
pn−1(x|θ)

. (8.6)

We can multiply this to the approximated likelihood-to-evidence ratio from the previous model

to get a refined approximation:

pn−1(x|θ)
p(x)

· p(x|θ)
pn−1(x|θ)

=
p(x|θ)
p(x)

. (8.7)

In theory, this sequence of models could be extended indefinitely. Eventually, if the discrimi-

nator can not differentiate between the output of the previous model and the actual likelihood,

it will simply return 1. In this section, we focus on a sequence of two models, to see if the

second model actually improves the classification of the first model.

8.3.1. Architecture and Training
In this case, we use the basic NRE model from Section 8.1 as our first model. The second

model has the same architecture as the first model. The only difference is that during training,

the loss function for class 0 samples will be multiplied by the predicted likelihood to evidence

ratio from the first model. Besides this, the training is done similar to the training described in

Section 8.1.1.

8.3.2. Classification Performance
To evaluate the Sequential NRE, we analyze both its classification capabilities and its ability to

approximate likelihood ratios for directional reconstruction. The classification capabilities are

measured by letting the full sequential model classify between correlated and uncorrelated
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Figure 22 Classification performance of the Sequential NRE model. Left: Output distributions of the classifier
showing predictions for true positive (blue) and true negative (red) classes. Right: Calibration curve showing the
ratio of true positive examples to all examples as a funreweightingction of prediction score.

Figure 22 shows the classification performance of the Sequential NRE model. The left plot

displays the distribution of classifier predictions for both true classes. As expected, it shows

very good discrimination capabilities. The calibration curve on the right however shows slight

unbalances. This is due to the fact that there are fewer events which were predicted to be

close to their respective target but not entirely close. This can also be seen in the left plot

when comparing with the previous classification plots. The densities show a steeper decline

before they settle around 10−2.
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Figure 23 ROC curve for the Sequential NRE classifier. The curve plots the TPR against the FPR at various
threshold settings.

Figure 23 shows the ROC curve for this model. The model achieves an AUC of 0.99864,

which is an improvement to the previous models.

Likelihood-free DL Techniques in Neutrino Astronomy 49



0.0 0.2 0.4 0.6 0.8 1.0
Confidence level

0.0

0.2

0.4

0.6

0.8

1.0

E
m

pi
ri

ca
l c

ov
er

ag
e

Conservative

Overconfident

Figure 24 Coverage plot for the Sequential NRE model. The coverage is evaluated based on 100,000 evaluation
events. Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is given by the dashed
line.

8.3.3. Likelihood Approximation Performance
The coverage plot in Figure 24 shows a slight overconfidence across all confidence levels.

This might be linked to the findings from the calibration curve and might be the result of the

sequential approach. While in this case, the deviations from the ideal lines are only small, it

should be further investigated for bigger imbalances.

The contours for the example events can be seen in Figure 25. The contours are in ac-

cordance to what was expected. The model found maximum likelihood points that are very

similar to the ones found by the von Mises-Fisher model in Section 8.2.3.

The angular resolution in Figure 26 confirms that the sequential approach improved the res-

olution of the original basic NRE model. However, the resolution still remains slightly worse

than the resolution of the backbone model. Further studies could be made by adding more

models to the sequence or combining different model architectures.
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Figure 25 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.
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Figure 26 Performance of the Sequential NRE model in terms of opening angle between point prediction and
truth. This plot shows the 16th, 50th, and 84th percentile for each energy bin. In the background, the grey
histogram represents the events being evaluated.
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8.4. NRE with injected DynEdge Point Estimate

In this section we want to analyze whether injecting a Point Estimate (PE) for the direction

coming from a model solely trained on directional reconstruction can help the NRE model to

not lose angular resolution when approximating the likelihood. We try this method for PEs

from the DynEdge model which is used as the backbone.

8.4.1. Architecture and Training

Pretrained
DynEdge

Discriminator

Observable

Feature
extractor

Latent 
observable

NRE
network

Likelihood 
to evidence
ratio

Direction

Point estimate

Figure 27 The architecture for the NRE method with injected PE. The observed pulsemap will go through
DynEdge to generate a latent representation of the observable. This is then concatenated with the PE and the
direction of interest and put through the discriminator, which then gives us the likelihood to evidence ratio.

The injection happens after the event has gone through the feature extractor. Now, we not

only concatenate the latent representation and the direction which we are evaluating, but

also the given PE. This can be seen in Figure 27. The PE is denoted as θPE. In principle,

the discriminator now should have an easier task to decipher whether the observable and the

direction are correlated or not. At the same time, it has direct access to a good prediction of

the maximum likelihood direction, which could help in refining the likelihood estimations.

Again, for comparability, the training is performed using the same parameters as described in

Section 8.1.1.

8.4.2. Classification Performance
First, the classification performance of a model with DynEdge injection is analyzed.

Figure 28 shows the classification performance of NRE model with injected DynEdge PE. The
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Figure 28 Classification performance of the NRE with injected DynEdge PE model. Left: Output distributions of
the classifier showing predictions for true positive (blue) and true negative (red) classes. Right: Calibration
curve showing the ratio of true positive examples to all examples as a function of prediction score.

left plot displays the distribution of classifier predictions for both true classes, while the right

plot displays the calibration curve of the same predictions. As before, the classifier worked

well in distinguishing both classes. The calibration curve looks near perfect, indicating a well

calibrated classifier that does not perform better for either class.
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Figure 29 ROC curve for the NRE model with injected DynEdge PE. The curve plots the TPR against the FPR
at various threshold settings.

Figure 29 shows the ROC curve for this model. The model attains an AUC of 0.99854, which

is comparable to the performance of previous models. The value exceeds that of the basic

NRE model, suggesting that the incorporation of the point estimate enhances classification

performance.
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Figure 30 Coverage plot for the NRE model with injected DynEdge PE. The coverage is evaluated based on
100,000 evaluation events. Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is
given by the dashed line.

8.4.3. Likelihood Approximation Performance

Figure 30 shows the coverage properties of the model with DynEdge PE injection. It shows

a slightly overconfident curve for higher confidence levels, very similar to what we have seen

for the von Mises Fisher sampling model (see Figure 19). In this case, as for the von Mises

Fisher sampling case, the deviations from the ideal coverage are rather small. For larger

deviations however, the cause should be studied, because in that case the coverage will not

be following Wilks’ theorem properly anymore.

Figure 32 shows the resolution of the NRE model with injected PE. It also shows an improve-

ment compared to the basic NRE model. The gap between DynEdge backbone model and

NRE is very small, especially for small energies.

Injecting the PE therefore helped the model to distinguish between correlated and uncorre-

lated classes and improved the resolution of the model. The coverage shows slight overcon-

fidence for higher confidence levels.

A similar model has been trained with injection of SplineMPE PEs. This investigation aimed to

determine whether such integration would further reduce the overall resolution of the model,

potentially approaching the resolution capabilities of the SplineMPE reconstruction. While

this approach improved the resolution compared to the basic DynEdge NRE model, it was not

able to exceed the resolution of the pre-trained DynEdge model, even when injecting PEs that

are objectively better than what the backbone can achieve. Therefore, the model maintains

substantial dependence on the latent event representation, as this encoding contains critical

information regarding directional uncertainty. The plots corresponding to the SplineMPE PE

injection model can be found in Appendix A.
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Figure 31 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.
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Figure 32 Performance of the NRE model with injected PE in terms of opening angle between point prediction
and truth. This plot shows the 16th, 50th, and 84th percentile for each energy bin. In the background, the grey
histogram represents the events being evaluated.
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8.5. Ensemble of NRE models

Another approach to improving the performance is to combine predictions from several mod-

els. This technique is called ensembling and shows good performance in many ML appli-

cations. In this case, we want to analyze whether the predictions of the basic NRE model

(Section 8.1), the von Mises Fisher sampling model (Section 8.2) and the Sequential NRE

model (Section 8.3) combined reach better angular resolution while approximating the likeli-

hood. We utilize the pre-trained models and compute the average of their predictions. Since

all models exhibit similar performance, we do not assign weights to their predictions.

8.5.1. Classification Performance
First, the classification performance is analyzed. The left plot in Figure 33 shows the distribu-

tion of classifier predictions for both true classes. It comes to no surprise that an ensemble of

good classifiers itself is a good classifier, showing very good discrimination between the two

classes. The calibration curve on the right shows a slight imbalance of the classes, which

indicates that the model has more problems in classifying samples from the uncorrelated

class.
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Figure 33 Classification performance of the ensemble model. Left: Output distributions of the classifier showing
predictions for true positive (blue) and true negative (red) classes. Right: Calibration curve showing the ratio of
true positive examples to all examples as a function of prediction score.

The ROC curve in Figure 34 also looks as expected. The ensemble shows an almost perfect

classification performance.

8.5.2. Likelihood Approximation Performance
Figure 35 shows the coverage properties of the ensemble. It shows a slightly conservative

curve, which means the truth is actually more often contained than the confidence level indi-

cates. In principle, conservative is better than overconfident, because the contours can really

be trusted. And in this case, the deviation from the ideal coverage is only rather small. When

looking at the example events in Figure 36, it is evident that averaging the likelihoods of the

models also combines their contour regions, making them slightly bigger than the individual
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Figure 34 ROC curve for the ensemble classifier. The curve plots the TPR against the FPR at various threshold
settings.

ones. In this case, the coverage only shows a small deviation from the ideal coverage. For

larger deviations however, the cause should be studied, because the contour lines are larger

than necessary and the model misevaluates its own capabilities.
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Figure 35 Coverage plot for the ensemble model. The coverage is evaluated based on 100,000 evaluation
events. Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is given by the dashed
line.

A good impact can be seen when looking at the directional reconstruction performance of

the ensemble in Figure 37. Here, the advantage of ensembling methods can be visible in

a resolution that matches the resolution of the DynEdge backbone. By combining the three

predictions, small errors of each model will be compensated by the other models, resulting in

more accurate predictions. While this is a good step in the right direction, the angular reso-

lution is still not clearly better than the resolution from the backbone. While this might be an

intrinsic limit of the method or architecture in use, combining more models with different pre-
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Figure 36 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.

trained backbones might help in further improving the resolution and therefore the capabilities

of the model when applied to tasks like point source analyses.
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Figure 37 Performance of the ensemble model in terms of opening angle between point prediction and truth.
This plot shows the 16th, 50th, and 84th percentile for each energy bin. In the background, the grey histogram
represents the events being evaluated.
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8.6. IceMix

Lastly, it is analyzed how the NRE method performs with a different, better backbone. For this

task, the IceMix model is chosen, which is the second solution from the IceCube Kaggle com-

petition (see Section 5.4). This model performed best on track events and outperformed the

basic DynEdge model. It uses Fourier encoding to embed the variables of each pulse, incor-

porates a DynEdge-inspired encoder for feature extraction and utilizes a superior transformer

architecture to predict the direction of the incoming neutrino.

8.6.1. Pre-training the Backbone
The IceMix model is pre-trained on an angular regression task just like the DynEdge model.

For that, the IceMix implementation in GraphNeT can be used. Here, default parameters are

specified that translate into a model with roughly 160 million parameters.

During training on the same Northern Tracks dataset as before, the pulses have an additional

feature which is the hard local coincidence flag. This flag indicates whether a pulse was

read out in coincidence with other pulses nearby. Again, we perform a pulse cut at 1,024

pulses. However this time, the pulse cut is applied by sampling 1,024 pulses from the event

pulsemap if the event has more pulses. Pulses with the hard local coincidence flag will be

preferred when subsampling, because these pulses are more likely to be actual signal pulses

rather than random noise. Using this subsampling method, we can train on events with all

numbers of pulses without having to discard the events with a high number of pulses.

Due to the model’s increased complexity and substantially longer training duration, we only

use a dataset containing roughly 1.8 million events, which are split into training and validation

dataset using a 9:1 split. The training loss is the von Mises Fisher loss described in Section

7.2. The batch size in use is set to 30 and ReduceLROnPlateau schedules the learning rate

using a factor of 0.1 and a patience of 2 epochs. The starting learning rate equals 0.001 and

the optimizer in use is Adam. An early stopping mechanism is implemented with a patience

of 5 epochs.

8.6.2. Performance of the pre-trained model
The evaluation of this pre-trained model is done on 100,000 events from the evaluation

dataset described in Section 7.3. To facilitate a more direct comparison, we evaluated events

with a pulse count of 1,024 or fewer and assigned a hard local coincidence value of 1 to all

pulses.

As expected, the IceMix model performs substantially better than the DynEdge model, even

though it is trained on much fewer events and does not get actual hard local coincidence

information during evaluation. This can be seen in Figure 38. For all percentiles across the

whole energy range, this model has a lower opening angle between reconstructed and true

direction. The gap to the traditional reconstruction method SplineMPE is significantly reduced
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Figure 38 Median opening angle of the directional point estimates of the pre-trained IceMix model in comparison
to the pre-trained DynEdge model and Spline MPE. In the background, the grey histogram represents the events
that are being evaluated. These events come from a dataset that the model has not been trained on. The
uncertainty bands come from bootstrapping and represent the 95% bands. Plotted in yellow is the mean
kinematic angle between neutrino and muon, which represents a lower bound for the resolution of the
reconstruction.

for all energies.

The higher resolution should give the corresponding NRE model a boost in its performance.

However, while these improvements are very significant, they come at the expense of flexibil-

ity of the model and training and evaluation time. This should be considered when working

with this model.

8.6.3. NRE Architecture and Training
For the NRE model, we use the same architecture as before (see Figure 9 in Section 8.1).

The only thing that changes is the feature extractor, which does not use the DynEdge model

but the pre-trained IceMix model without the prediction head. The parameters of the IceMix

model stay frozen during training except for the last two layers of the MLP which is part of the

last transformer block. Unfreezing these layers showed a slight performance improvement.

The output of the backbone, which is our latent representation of the event observable, is 128

dimensional, just like before. The direction of interest in euclidean coordinates is concate-

nated to the latent representation. The discriminator architecture stays the same as for all

models, utilizing an MLP with 10 hidden layers and roughly 480,000 trainable parameters.

The training is performed analogous to the pre-training of the IceMix backbone described in

Section 8.6.1.

8.6.4. Classification Performance
To evaluate the performance of model IceMix, we analyze both its classification capabilities

and its ability to approximate likelihood ratios for directional reconstruction. As for the per-
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formance of the pre-trained model, we use the same evaluation dataset as for the DynEdge

based models, which does not contain the hard local coincidence flag in its pulsemaps.
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Figure 39 Classification performance of the IceMix model. Left: Output distributions of the classifier showing
predictions for true positive (blue) and true negative (red) classes. Right: Calibration curve showing the ratio of
true positive examples to all examples as a function of prediction score.

Figure 39 shows the classification performance of the IceMix NRE model. As all the models

before, it shows good discrimination ability. However, the calibration curve shows a slight

preference for class 1 at lower prediction scores, meaning the model is more confident in

predicting uncorrelated samples from class 0.
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Figure 40 ROC curve for the IceMix classifier. The curve plots the TPR against the FPR at various threshold
settings.

Figure 40 shows the ROC curve for this model. The model achieves an AUC of 0.99883,

which is the highest of all trained models.
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Figure 41 Coverage plot for the IceMix model. The coverage is evaluated based on 100,000 evaluation events.
Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is given by the dashed line.

8.6.5. Likelihood Approximation Performance
Figure 41 shows the coverage properties of the IceMix model. It shows a slight overconfi-

dence for higher confidence levels, meaning the likelihood contours are slightly too narrow

at the base of the likelihood peak.While this may not appear particularly concerning at first

glance, it should be examined further for robust analysis. A possible explanation could be the

fact that the evaluation dataset does not contain hard local coincidence information.

When looking at the three example events in Figure 42, the model shows good recovery of the

truth. For these events, the 90% contour are smaller than the ones from the basic DynEdge

NRE model.

When it comes to the actual angular resolution, Figure 43 shows the performance we ex-

pected. It is much improved compared to the DynEdge based models. Nevertheless, the

maximum likelihood point estimate of the IceMix NRE model also exhibits a marginally larger

opening angle compared to the pre-trained backbone model’s point estimate, which appears

to represent an inherent limitation of this method. While it rules out that the architecture of

the backbone causes this loss in precision, the training method of the pre-training could be

changed to investigate the impact. Although training the entire architecture from scratch with-

out pre-training represents a theoretically viable approach, our own attempts revealed that

this methodology presented significant training challenges and yielded performance metrics

inferior to those achieved with the pre-trained backbone architecture. However, the task of

the pre-training could be changed. For example, it could be trained on more than just the

direction and uncertainty parameter. The energy could also be added to the pre-training pro-

cess, which might give the resulting latent vector more information about the nature of the

event and the corresponding likelihood.
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Figure 42 A grid scan of the likelihood for three example events from the evaluation dataset. Here, two times the
delta log-likelihood is taken between the maximum likelihood and the likelihood at that given direction. The 90%
contour line shows the level where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The
red, green and blue marker show the true direction, the reconstructed direction from SplineMPE and the
maximum likelihood direction from this model respectively.
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Figure 43 Performance of the IceMix model in terms of opening angle between point prediction and truth. This
plot shows the 16th, 50th, and 84th percentile for each energy bin. In the background, the grey histogram
represents the events being evaluated.
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9. NPE Model Development

As described in Chapter 6, NRE has a Bayesian twin, the NPE. This method approximates

the posterior distribution p(θ|x) rather than the likelihood to evidence ratio p(x|θ)
p(x) . This yields

the opportunity to make analyses in the Bayesian framework. However, if the frequentist

framework is preferred, we can still obtain the likelihood ratio, which is used in the test statistic

of our directional analyses of IceCube data. All we need is knowledge of the prior p(θ):

∆ logL = log
L(θ1)

L(θ2)
= log

p(θ1|x)
p(θ2|x)

− log
p(θ1)

p(θ2)
(9.1)

While DNFs represent a viable tool for NPE, this thesis proceeds directly to the examination

of CNF and FM. However, the GraphNeT framework recently received an implementation of

the DNF library jammy flows1, which will make research into DNF more accessible for the

neutrino astronomy community.

For the implementation of the FM algorithm, we use an adaptation of the Flow Matching for

Atmospheric Retrieval (FM4AR) repository2. This repository uses CNFs to infer atmospheric

properties of exoplanets from observed electromagnetic spectra. While this task in principle

is vastly different from reconstructing neutrino directions, the framework still allows for easy

adaptation.

9.1. Architecture and Training

The general architecture of the method can be seen in Figure 44. Similarly to the NRE mod-

els, we first use a frozen feature extractor to obtain a latent representation of the events. In

this case, the pre-trained DynEdge model is utilized. The 128 dimensional latent represen-

tation does then go through a simple embedding MLP with 128 dimensions each. The time

and the direction are also embedded using a fourier encoder (similar to the one used in the

IceMix model) and MLP with 128 total dimensions. The embedded latent observable, time

and direction are then concatenated and given as the input to the NPE network with a total

of almost 400 million parameters. The NPE network forms the time dependent vector field

that based on the given context, in our case the latent observable of an event, transforms the

base distribution into the posterior distribution over time.

To solve equation 6.9 in order to evaluate the posterior distribution for a given θ, a DOPRI53

ODE solver is utilized. It integrates the divergence of the vector field from t = 0 to t = 1

1 The GitHub repository can be found here.
2 The GitHub repository can be found here.
3 The ODE solver makes use of the Dormand-Prince method of order 5. The corresponding repository can be

found here.
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Figure 44 The architecture for the NPE method using CNFs and FM. The observed pulsemap will go through
DynEdge to generate a latent representation of the observable. After a few simple embedding layers, the latent
representation will act as a context to condition the time dependent neural vector field. An ODE solver will then
query the vector field based on t and θ to transform the base distribution into the posterior distribution (see
Section 6.3).

and simultaneously obtains the corresponding θ0 (this method is shown in Appendix C in

[47]), which is all that is needed for the posterior distribution. The base distribution is set as

a standard Gaussian in three dimensions and σmin, which is the standard deviation of the

Gaussian distribution around our target parameters, is set to 0.0001.

The training procedure is described in Section 6.3. The optimizer chosen is Adam. The train-

ing utilizes the same dataset as for the DynEdge NRE models. The batch size equals 15,000

and the learning rate scheduler is set to CosineAnnealingLR, which reduces the learning rate

from a starting learning rate of 5 ·10−5 following a cosine function over 2000 epochs. An early

stopping patience is set to 200 epochs.

Convergence for this model requires a substantial number of epochs, although each epoch

has a relatively short training duration of approximately two minutes on an NVIDIA A100

GPU. During the initial 100 to 200 epochs, the loss curves reach a plateau, as the model

primarily learns the general directional distribution of the data without incorporating the event

observable. Over time, the model manages to escape this plateau; however, it requires

approximately 1,500 epochs for the validation loss to reach its minimum. While this suggests
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that a higher learning rate or a smaller vector field model could be beneficial, trials revealed

that either adjustment significantly increased training difficulty.

9.2. Performance

Because this training task is about adjusting a vector field such that it creates the optimal

transport path, there are no classification metrics to analyze as for the NRE models. As

previously discussed, the ODE solver can be employed to evaluate points within the target

posterior distribution. However, this process is computationally intensive due to the high

parameter count of the implemented vector field network. Generating meaningful posterior

skymaps or likelihood contours requires several minutes per event, which becomes prohibitive

when analyzing coverage and angular resolution, as these analyses need evaluations for

thousands of events. Because of these constraints, we will only look at the three example

events from before. Figure 45 shows the posterior distributions of these events as inferred by

the NPE model.
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Figure 45 A grid scan of the posterior for three example events from the evaluation dataset. The 90%
confidence line shows the level for which the posterior distribution holds roughly 90% of its mass. The red, green
and blue marker show the true direction, the reconstructed direction from SplineMPE and the maximum
posterior direction from this model respectively.

These plots show that also NPE can be used to recover the direction from neutrino events.

The 90% confidence regions are determined by ranking the evaluated grid points based on

their probability and sequentially summing them until they comprise 90% of the total prob-

ability across the grid. This assumes that the probabilities at points outside of this grid are

sufficiently small. The last added probability then indicates the level for the contour line.

Because the prior is known, we can check whether the contour lines that come from Wilks’

theorem match the lines for the Bayesian 90% confidence regions. In these cases, a flat prior

can be assumed over the evaluated region. The delta log-likelihood can then be calculated
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by just subtracting the logarithm of the posterior at a given grid point from the maximum

log-posterior. Multiplied by 2, Wilks’ theorem can be applied to generate the contours in the

frequentist framework. This can be seen in Figure 46.
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Figure 46 A grid scan of the likelihood for the three example events from the evaluation dataset. Here, two times
the delta log-posterior is taken between the maximum probability and the posterior at that given direction.
Because the priors are sufficiently flat, this yields the log-likelihood ratio. The 90% contour line shows the level
where the cumulative χ2 distribution with 2 degrees of freedom reaches 90%. The red, green and blue marker
show the true direction, the reconstructed direction from SplineMPE and the maximum posterior direction from
this model respectively.

The contours look almost identical to the Bayesian confidence regions, which indicates the

success of estimating the posterior (and subsequently the likelihood) for the given events.

Because of the slow inference time however, this method is not a viable option to analyze the

thousands of events from neutrino detectors like IceCube. This might change however with

better hardware, faster ODE solvers, better, more lightweight vector field networks or faster

inference methods.

While this implementation proved to be working, an improvement could be made in the em-

bedding of the directions. While in principal, only two parameters are inferred, namely azimuth

and zenith, this model relied on euclidean coordinates to account for the spherical nature of

the directions. These coordinates are not inherently bounded, and while the model quickly

adapts to the target distribution on a unit sphere, this representation can still introduce chal-

lenges during training. A spherical embedding for the base distribution, the target distribution

as well as the probability paths could solve this problem and make it easier for the model

to train. This could also mean that a smaller, more lightweight model with fewer parameters

may be sufficient to model the probability paths, which in turn would make inference time

shorter.
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10. Applications

In this chapter, the performance of the NRE models is evaluated in the context of their ap-

plication to the target data intended for analysis. First, we are performing a point source

analysis for a simulated pseudo dataset that mocks an NGC 1068-like source based on the

IceCube’s study in [48]. The goal is to see whether our model is able to find an excess of

signal events at the source location. Second, we want to discuss whether real-time multi-

messenger astronomy can benefit from the models discussed in this thesis by analyzing its

performance on alert events. Alerts are usually high energy tracks that the first stages of

data processing in IceCube already flag as events with high probability of being of astrophys-

ical origin. IceCube then gives out an alert to the multi-messenger community in order for

other telescopes to quickly point into the alert direction and observe coinciding events in their

respective multi-messenger regime.

10.1. Mock Point Source Analysis for NGC1068 like Pseudodata

The main motivation for this thesis was to find ways of approximating the intractable direc-

tional likelihoods of neutrino events in a fast and flexible way without having to rely on sum-

mary statistics and other assumptions. The NRE models developed in this thesis can directly

infer the likelihood at a given point from the pulse-level event data. While the angular resolu-

tions show room for improvements, the coverages looked promising. In this section we want

to investigate how this translates into an actual point source analysis for a NGC 1068 like

source.

The events used for this analysis come from the same dataset from which the training and

evaluation datasets were taken. In total, about 37,000 simulated events were used to mimic

data from a source at a location with right ascension ra = 60◦ and declination α = 15◦ (ac-

tual location of NGC 1068: ra = 40.67◦, α = −0.01◦) as well as a fixed energy spectrum

with γ = 3.2. The events are selected based on the reconstruction of SplineMPE. For the

background event flux we would expect, the event selection takes the events that SplineMPE

reconstructed within a 30◦ by 30◦ window with the source location at the center. However, be-

cause our model does not use SplineMPE as a reconstruction basis, we perform our own cut

by finding the maximum likelihood estimates from our model and only use those events within

a 10◦ circle around the source location. The cut was made because in the reconstruction

of the maximum likelihood points for the background events, an artifact-like bias was found.

Cutting these events prevents the bias to influence the analysis, although the source of these

artifacts should be investigated and eliminated in future applications.

On top of the background, we injected 81 signal events at the source location. This number

corresponds to the actual number measured in the NGC 1068 study [48]. The injection allows
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us to test whether our NRE model can detect an excess of events from the source direction

amid the background.

The methodology for our point source analysis using the NRE model utilizes the following

approach. First, we apply a forward pass of our trained models to the entire dataset, which

yields the spatial signal-over-background PDF for each event at a grid of evaluation points

around the source location. Next, we fit the number of signal events ns in our TS

TS = 2 ·
∑
i

log

(
ns
N

(
S

B

)
i

+
N − ns
N

)
(10.1)

to maximize the TS at the source location. Here, N denotes the total number of events from

the dataset from which the mock dataset around the source was taken. For all events that

are outside the given window, we assume the signal over background ratio to be zero. The
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Figure 47 The TS at the the source location for different ns and different NRE models. The ns that maximize the
TS are chosen as the best fit.

results of the fit can be seen in Figure 47. Except for the von Mises-Fisher model, all models

fit an ns that is 3-5 times higher than the actual number of injected signal events. The von

Mises-Fisher model is closest to ns = 81, although it still deviates significantly. Using the

SplineMPE and KDE method described in Section 3.6, ns is fitted almost exactly at the truth.

This already indicates that the NRE methods have problems in filtering out the actual signal

events from the many background events.

Lastly, we compute the combined TS at every grid point with the fitted number of signal events

ns. The results can be seen in Figure 48.
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Figure 48 Joint contours for all events in our dataset. The true source location is marked with a cross at
ra = 60◦ and δ = 15◦.

The results show contour lines close to the source with shapes and sizes that can be expected

from point source analyses. However, the maximum likelihood estimates seem to be slightly

off center. To better understand these results, we isolated the signal events and computed

their contribution to the likelihood plots, as shown in Figure 49.

In this signal-only scenario, which would correspond to an analysis with a perfectly uniform

background, we can clearly identify the signal around the truth. However, in our full dataset

analysis, the background events induce bias that washes out a lot of the signal contribution.

In comparison, the contours of the traditional method based on SplineMPE and KDEs can be

seen in Figure 50. Although the truth lies just outside the 68% contour, this method performs

best in estimating ns as well as discriminating signal and background events.

Several factors may explain the underperformance of our NRE model. First, the angular

resolution may simply be insufficient to identify the relatively small number of signal events
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Figure 49 Combined delta log-likelihood plots for only the injected signal events. This represents how the
analysis would appear with a perfectly uniform background.

within the large dataset. The angular uncertainty of our model is significantly higher than

that of SplineMPE, resulting in less confident predictions and therefore lower signal-over-

background ratios for signal events. This uncertainty may prevent our model from achieving

the high confidence levels necessary for effective point source identification. The absence

of energy information in our analysis represents another potential limitation. Although NGC

1068 has an energy spectrum similar to the atmospheric background - meaning the energy

contribution would not be substantial - including energy PDFs could still improve discrimina-

tion between signal and background.

Additionally, the artifact in the background inference, which was cut out using the circular cut

around the source, might still have introduced a bias into this analysis. The source of the

artifact and the influence should be investigated for further improvement of the analysis.

These findings leave room for further investigation. The NRE method itself works in princi-

ple, as demonstrated in this thesis. However, it is currently not suitable as an alternative to

Likelihood-free DL Techniques in Neutrino Astronomy 72



1 0 1
 azimuth [deg]

1

0

1

 z
en

ith
 [d

eg
]

0

10

20

30

2
lo

g-
lik

el
ih

oo
d

Truth
Max Likelihood

68% contour
95% contour

Figure 50 The delta TS plot with the corresponding Wilks contours as given by the traditional SplineMPE
approach.

traditional point source analysis techniques because its resolution is substantially worse than

that of SplineMPE. The general approach demonstrates theoretical soundness, but the imple-

mentation, particularly the feature extraction component, requires significant refinement. We

anticipate that continued development within the GraphNet framework for neutrino astronomy,

coupled with advancements in deep learning methodologies, will ultimately yield directional

resolutions that meet or exceed those achieved by SplineMPE. Such improvements would

make NRE a viable option for point source analyses.
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10.2. Alerts

Another possible application of the NRE approach is in the context of alert events. These are

typically high-energy track events with energies above ∼ 100TeV that IceCube’s data pro-

cessing pipeline immediately flags as having a high probability of astrophysical origin. When

such events are detected, IceCube issues alerts to other telescopes in multi-messenger as-

tronomy, enabling them to rapidly point their instruments toward the region of interest and

measure potential coincident signals in their respective multi-messenger regimes.

This application demands a fast and reliable method for determining the direction of the neu-

trino with well-defined confidence regions. An NRE model could potentially provide the nec-

essary speed and reliability for this application. To investigate whether the method would be

suitable for alert events, we further looked at high energy events specifically. For that task,

the IceMix NRE model was chosen, because it was trained on events with all pulse counts,

i.e. also the very high-energy events which we would expect to be alert events.

First, the coverage properties of our model for 100,000 events with energies above 100 TeV

are analyzed. Being able to quickly give a region of interest with reliable confidence contours

is the main task for this application.
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Figure 51 Coverage curves for high-energy (>100 TeV) events using the IceMix model. The coverage is
evaluated based on 100,000 evaluation events. Ideal coverage, corresponding to the χ2 distribution with 2
degrees of freedom, is given by the dashed line.

Figure 51 shows the coverage curve for these high-energy events. The model shows a slight

underconfidence, which means the given contours are slightly bigger than ideal contours.

This conservative behavior, while not ideal, is not necessarily problematic from a scientific

standpoint, as it is generally better to be conservative than overconfident when reporting

confidence regions.

One possible explanation is that the model was not explicitly trained on these high-energy
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events. Most of the training events had energies lower than 100 TeV, which often times offer

less rich directional information and therefore require larger contours. Overall though, the

IceMix model might be a good candidate for identifying alert events and their corresponding

regions.

To illustrate the capabilities of our model, three example alert events are examined to compare

the model’s confidence with those provided by IceCube.
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Figure 52 Topologies of the three alert events examined in this chapter. The spheres represent measured
charges at individual DOMs, with size proportional to charge magnitude and color indicating detection time. The
events, identified by their respective EventIDs 41853263, 56963417, and 62872761, were recorded in early
2013.
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Figure 53 Comparison of likelihood regions for example alert events. Again, the contour levels for the IceMix
model are based on the χ2 distribution according to Wilks’ theorem.

Figure 53 shows a comparison between official IceCube likelihood regions given by the

Likelihood-free DL Techniques in Neutrino Astronomy 75



ICECAT-11 catalog and those generated by our model for selected alert events. The likeli-

hood regions given in the ICECAT-1 catalog are follow-up reconstructions using a maximum-

likelihood-based scan of the entire sky, which usually takes about 1-3 hours [49]. Our model

successfully identifies the same directional region as those published by IceCube. These

three events however show that for some events, IceCube is able to find much smaller alert

regions, while the sizes for the IceMix NRE model are all similar. For events like the one

shown in the left plot however, IceMix shows more refined contours than IceCube. It should

be noted that the NRE model gives conservative estimates. Therefore, it is demonstrated that

the approach can generate reliable contours for high-energy alert events and might find an

application within this task.

The speed of inference is a critical factor for alert applications. While our method shows

promise in terms of accuracy, its practical utility depends on whether it can deliver results

within the time constraints of the alert system. In our trials, the inference only takes a few

seconds on appropriate hardware, but this needs to be verified under conditions that mimic

the real operational environment, considering factors such as available hardware and any

necessary data transformations.

Further studies could substantially enhance the applicability. First, developing models specif-

ically trained on alert events would create specialized systems optimized for these type of

events. Alert events have distinct characteristics compared to the broader neutrino event

population, including higher energies and better-defined tracks. A model trained exclusively

on these events could likely achieve better resolution and more accurate confidence regions

than our current general-purpose model.

Second, comprehensive hardware integration testing would provide crucial insights into real-

world performance. The models should be tested on the actual hardware used in IceCube’s

real-time processing pipeline to provide realistic estimates of inference speed under opera-

tional conditions. This testing would need to account for the entire processing pipeline, in-

cluding data preprocessing, model inference, and post-processing of results to generate the

final alert information. Optimizing each step of this pipeline for the specific hardware available

at the IceCube facility would ensure that the theoretical advantages of our approach translate

into practical benefits in the alert system. Additionally, it could help finding an optimal balance

between model performance and inference speed.

Further research into this direction could help develop the proof-of-concept approach of this

thesis into a potentially useful tool that might complement IceCube’s existing capabilities in

giving alerts to the multi-messenger community.

1 The ICECAT-1 database can be found here.
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11. Conclusion

This thesis has provided an in-depth exploration of methodologies for improving point source

analyses in neutrino astronomy, with a focus on leveraging modern ML techniques. The

IceCube Neutrino Observatory, the world’s largest neutrino detector, served as the context

for this investigation. Central to the study was the challenge of approximating directional

likelihoods necessary for hypothesis testing in point source analyses, which are traditionally

computationally intractable. Two new approaches were presented: NRE using the likelihood

ratio trick and NPE employing CNFs.

The proposed methods bypass traditional steps such as reconstructing point estimates, fitting

KDEs, and approximating uncertainties. By directly estimating likelihoods from raw event-

level data, these approaches aim to simplify and enhance the analysis pipeline. A general

architecture was developed, utilizing a pre-trained DynEdge backbone for feature extraction

from event data, followed by neural networks tasked with either ratio or posterior estimation.

For NRE, the neural network was trained to distinguish between correlated and uncorrelated

pairs of observables and directions. While classification performance was near perfect and

coverage closely aligned with ideal expectations, the angular resolution achieved remained

slightly inferior to that of the pre-trained backbone. Various strategies were explored to im-

prove resolution, including sampling from von Mises-Fisher distributions to break correlations,

sequential model refinement, explicit injection of point estimates alongside latent represen-

tations, and ensemble modeling. Although these methods enhanced predictions, none sur-

passed the resolution achieved by the pre-trained feature extractor. This limitation was further

corroborated by experiments with the IceMix model, which demonstrated that better feature

extraction directly leads to improved resolution.

To match or exceed the resolution of traditional methods, advancements in feature extraction

models are required. Current architectures struggle with events containing large numbers

of pulses, indicating that they fail to capture complete event information. Research into im-

proved data representations - such as employing autoencoders or contrastive methods - may

yield low-dimensional embeddings that retain comprehensive event details and address these

shortcomings.

The NPE approach also showed promise. By training CNFs through FM, Bayesian confidence

regions closely matched likelihood contours, suggesting successful posterior approximation.

However, inference time remains a significant bottleneck due to the computational demands

of integrating over large neural networks representing time-dependent vector fields. While

this method holds potential for future applications - especially if lighter network architectures

or faster ODE solvers become available - its current computational cost limits practical use.
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Two applications of NRE models were explored: point source analysis and multi-messenger

alerts. For point source analysis, pseudodata from an NGC 1068-like source was used to

construct combined likelihood contours consistent with expectations for such tasks. Despite

this success, background events dominated due to insufficient angular resolution and missing

energy information that could aid signal-background separation. Nonetheless, this proof-of-

concept demonstrated that likelihood contours can be derived directly from raw event data

without intermediate steps like point estimation or uncertainty approximation.

In multi-messenger astronomy alerts, NRE models inferred likelihood regions for single events

within seconds. The contours generated showed compatibility with the official IceCube alert

contours given in the ICECAT-1 catalog. However, the IceCube alert contours displayed con-

siderably greater variability in their spatial extent compared to the NRE-derived contours.

Improvements in training methodology and further testing under real-time constraints are

necessary to evaluate their viability for this application.

In summary, this thesis has laid the groundwork for integrating deep learning techniques into

neutrino astronomy workflows by demonstrating their ability to estimate likelihoods directly

from raw data while circumventing traditional limitations. Although challenges remain - partic-

ularly in feature extraction and computational efficiency - the findings represent a significant

step toward more streamlined and scalable approaches for point source analysis and multi-

messenger astronomy alerts. Future work should focus on refining feature extraction models

and exploring faster inference techniques to fully realize the potential of these methods.
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A. Results for NRE model with injected SplineMPE
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Figure 54 Classification performance of the NRE with injected SplineMPE PE model. Left: Output distributions
of the classifier showing predictions for true positive (blue) and true negative (red) classes. Right: Calibration
curve showing the ratio of true positive examples to all examples as a function of prediction score.
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Figure 55 ROC curve for the NRE model with injected SplineMPE PE. The curve plots the TPR against the FPR
at various threshold settings.
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A.2. Likelihood Approximation Performance
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Figure 56 Coverage plot for the NRE model with injected SplineMPE PE. The coverage is evaluated based on
100,000 evaluation events. Ideal coverage, corresponding to the χ2 distribution with 2 degrees of freedom, is
given by the dashed line.
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