
Physik-Department

Application of Deep Neural

Networks on Event Type

Classification in IceCube

Masterarbeit

von Maximilian Kronmüller (03649019)

Prof. Elisa Resconi

13.12.2018

Technische Universität München

Erstgutachter (Themensteller): Prof. Elisa Resconi
Zweitgutachter: Prof. Susanne Mertens

Contents

1 Introduction 1

2 The IceCube Neutrino Observatory 5

2.1 Detector Setup . 5
2.1.1 Digital Optical Modules . 7

2.2 Measurement Principle . 7
2.3 Waveform and Pulses . 7
2.4 Event Topologies in IceCube . 9

3 Particle Physics 13

3.1 Neutrino Interactions . 13
3.2 Tau Decay . 13

4 Theory of Neural Networks 15

4.1 Neural Networks in the Field of Machine Learning 15
4.2 The Basics of Neural Networks . 16

4.2.1 Building a Neural Network 16
4.2.2 Training of a Neural Network 21

4.3 Residual and Inception Units . 23
4.3.1 Residual Units . 23
4.3.2 Inception Units . 24

4.4 Multi-Task Learning . 26
4.5 Confusion Matrix . 27

5 Specification of the Dataset 29

5.1 Specifics of IceCube Data for Neural Networks 29
5.1.1 Input Features . 29
5.1.2 Grid . 31

5.2 Label Definitions . 33
5.2.1 Event Topologies . 33
5.2.2 Further Classes . 34

5.3 Properties of the Monte Carlo Simulation 36
5.4 Event Selection . 36
5.5 General Properties of the Dataset 37

5.5.1 Training, Validation and Test Set 37
5.5.2 Event Distributions in the Dataset 37
5.5.3 Distribution of Physics Parameters 39

5.6 Impact of the Dataset Composition 42

6 The Classifier 45

6.1 Specification of the Classifier . 45
6.1.1 Input . 45
6.1.2 Architecture . 45

6.2 The Training Process . 46
6.2.1 Choice of the Final Neural Network 50

6.3 Event Type Classification . 50
6.3.1 Probabilistic Interpretation of the Neural Networks Output . 56

i

6.4 Starting Events Identification . 57
6.5 Coincidence Identification . 59
6.6 Exemplary Events and their Predictions 61

7 Potential Applications in IceCube 63

7.1 Weighted Results . 63
7.1.1 Event Type Classification 63
7.1.2 Starting Event Identification 65
7.1.3 Coincident Event Identification 67

7.2 Usage for Event Selections . 68
7.3 Double Bang Detection . 71

8 Conclusion and Outlook 75

8.1 Conclusion . 75
8.2 Outlook . 76

Acknowledgements 79

A Appendix A 81

A.1 Monte Carlo Simulation . 81
A.2 Additional Distributions of Physics Parameters 81
A.3 Details to the Classifiers Setup . 87

A.3.1 Stem . 87
A.3.2 Training Parameter . 87

A.4 Confusion Matrix p-cut . 88
A.4.1 Event Type Classification 88
A.4.2 Starting Events Identification 89
A.4.3 Coincidence Identification 90

A.5 Tau Analysis . 91

Bibliography 95

List of Figures 98

List of Tables 99

List of Abbreviations 101

Declaration 103

1

C
h
a
p
t
e
r

Introduction

In September 2017, the first likely source of high-energy astrophysical neutrinos
was found, the blazar TXS 0506+056 [5]. Beforehand, the existence of a diffuse
flux of high-energy astrophysical neutrinos had been proven but it hadn’t been
possible to locate individual sources [1]. The event, IceCube-170922A, was mea-
sured by the IceCube collaboration, which operates the largest neutrino telescope
on Earth. Follow-up measurements were made, which were in accordance with
IceCube-170922A. The Large Area Telescope (LAT) on the Fermi Gamma-ray
Space Telescope observed a state of enhanced gamma-ray activity in the area of
TXS 0506+056. Additionally, gamma rays in a spectrum up to 400 GeV were
measured by the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) tele-
scopes [5]. This first evidence of neutrino sources is seen as one of the biggest
breakthroughs in the field of multi messenger astronomy. Yet, the discovery of
additional sources is still one of the key goals in multi messenger astronomy. With
more sources we would have a significantly higher chance to learn more about the
sources themselves as well as the flux produced by them. While source searches
proceed, new methods must be developed to improve event reconstructions, flavor
identifications and computational speed.

In recent years, machine learning methods have shown remarkable progress and are
therefore now applied to a wide range of problems across all areas. Especially the
field of deep neural networks experienced a tremendous boost [26] [24]. Previously
unsolvable problems have become possible to tackle. A good example illustrating
this enormous progress was the win of Google’s AlphaGo over Mr. Lee Sedol,
winner of 18 world titles, in the ancient game of Go in 2016 [32]. The competition
received a lot of public attention as computers have been far from competing with
professional players in this game beforehand.
Identifying malignant cancer, critical pedestrian detection through autonomously
driving cars or the separation of good and bad products are just some examples
for classification problems, that arise across almost all fields. It is hoped that one
will be able to automate and fasten up processes by solving classification problems
through intelligent machines. Furthermore, one thinks to be able to take better
decisions, as machines are able to detect patterns in data that humans maybe can’t.
Machine classification is thus expected to have the potential to transform whole
industries. A lot of research was therefore been done in this field in recent years.
Many new techniques have been developed and successfully applied to various
problems.

The stunning results achieved in other areas through the use of deep neural networks
have inspired us to utilize deep learning for classification problems in neutrino

1

physics. This thesis will concentrate on the IceCube experiment located at the
South Pole. Within IceCube different analyses are conducted to answer open ques-
tions in astroparticle physics, as for example the search for astrophysical neutrino
sources. Many of these analyses require the identification of the event topology or
the classification according to other criteria.
One type of analysis focuses on the identification of single events of a particular
event topology, for example the double bang structure. The interest arises because
double bang structures can only originate from tau neutrinos ντ and are therefore
very likely to be of astrophysical origin. Other analyses base on larger dataset of
one specific event type. Thereby the systematics can be handled easier, compared
to a multi-flavor case. In those cases it is important to have an event selection
that results in a dataset that is as pure as possible. Often point source searches
are performed on datasets consisting only of track-like events, due to their good
angular resolution. But also analyses working across event topologies, also called
all-flavor analyses, rely on an event classification to distinguish and handle the
events appropriately.

As event classification is an essential part of many analyses conducted in IceCube,
this thesis will focus on the application of deep neural networks on this task. At
the moment in IceCube no method exists that is dedicated to distinguish between
the different event topologies. Hence in the scope of this thesis we tried to achieve
a well working, fast and easy to use neural network to do so. In the following, the
structure of this thesis is outlined.

In Chapter 2 the IceCube neutrino telescope is introduced in more detail. The
general setup and the basic detection unit are explained. Furthermore, the mea-
surement principle within the ice and the data handling are discussed. To conclude
this chapter we present the different event topologies that can be seen by IceCube.

Chapter 3 introduces the basic physics principles important for this thesis. Firstly,
the neutrino interactions and their cross sections at energies relevant for IceCube
are outlined. Secondly, we discuss the different tau decay channels.

In Chapter 4 the fundamental theory of neural networks is presented. First neural
networks are put in context with the broad field of machine learning. Next their
basics are introduced, followed by more advanced neural network architectures
which are important for of this thesis. Additionally the concept of multi-task
learning is outlined. And finally a concept to analyze classification tasks, the
confusion matrix, is explained.

In Chapter 5 we first take a look at the specifics of IceCube data, especially for
the use with neural networks. Further the different labels needed as ground truth
in supervised learning are defined. The dataset on which a network is trained plays
a major role onto the final result. Therefore we continue by introducing our dataset.
Moreover our event selection and the different properties of the resulting dataset
are presented. To conclude this chapter we discuss the development of the dataset

2

over time and possible introduced biases.

Chapter 6 explains the final classifier. First its general architecture and its training
process are outlined. Next the performance of the classifier is explained separately
for each task, namely event topology classification, starting event identification
and coincident event identification. At the end of this chapter some exemplary
events and their predictions by the classifier are presented.

Chapter 7 presents some of the potential applications of the classifier for the
use in IceCube. We show the results again, now weighted to the IceCube best-fit
neutrino flux. Further the use for event selections is discussed. To conclude this
chapter we present the possibility to use the classifier to find tau neutrino candidates.

The final Chapter 8 ends this thesis with a conclusion and an outlook. Supplemen-
tary information, like additional plots or details to our used data, are given in the
appendix.

3

4

2

C
h
a
p
t
e
r

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory or most of the time shortly called IceCube is a
large volume neutrino detector, which is operated deep down in the ice near the
geographical South Pole. With its cubic-kilometer scale it is up to today the largest
neutrino telescope on Earth.
In the following chapter we introduce IceCube in more detail. First the general
detector setup, followed by a short outline of the basic measurement principle and
how IceCube handles the measured information is discussed. To conclude this
chapter, we present the different event topologies which can be seen by IceCube.

2.1 Detector Setup

This section gives an overview about the IceCube detector itself. A comprehensive
description can be found in [4], which also builds the foundation of this chapter. For
a first overview of the experiment the general setup of IceCube is shown in Figure 2.2.

Figure 2.1: The exact placement of the
IceCube strings is sketched. The strings
marked in green belong to the InIceArray,
the ones in red to DeepCore.

IceCube is located near the Amundsen-
Scott South Pole Station. At the surface
the IceCube Laboratory and the IceTop
detector are placed. In the ice between
1450m and 2450m depth is the InIceAr-
ray with its subarray DeepCore. The In-
IceArray is arranged in 86 strings each
instrumented with 60 Digital Optical
Modules, short DOMs. In general the
DOMs are 17m apart from each other
in vertical direction. The DOMs repre-
sent the basic detection units of IceCube.
They will be presented in more detail in
Section 2.1.1. In total the detector con-
sists of 5160 DOMs. The strings them-
selves are arranged in a nearly hexag-
onal grid. Their horizontal distance is
about 125m. The exact arrangement of
the strings is shown in Figure 2.1. The
strings marked in red are arranged in a denser manner, those strings build the so
called subarray DeepCore. While IceCube measures events in an energy range from
100GeV to several PeV without DeepCore, including the latter allows measure-
ments down to 10GeV. In the following of this this thesis we will use the term
IceCube in a narrower sense for the InIceArray and DeepCore.

5

Figure 2.2: To give a first overview of IceCube, many parts of the experiment
are depicted. IceTop and the IceCube Laboratory are at the surface. Deep down
in the ice the InIceArray with its subarray DeepCore are placed. They consist
of 86 strings each equipped with 60 digital optical modules. In average they are
horizontally 125m apart of each other. In vertical direction the digital optical
modules are separated by 17m. More detailed information is given in the text.

6

2.1.1 Digital Optical Modules

Figure 2.3: Schematic sketch of the setup
of a Domestic Optical Module (DOM) as
used in IceCube [4].

The DOM is the basic detection unit of
IceCube. Its schematic setup is shown
in Figure 2.3. It mainly consists of a
10′′-diameter down-facing photomulti-
plier tube (PMT) and the associated
circuit boards. All components are sur-
rounded by a glass sphere to be pro-
tected from the surrounding. The PMT
can measure at single photon level. As
the signals reaching the PMT are of
wide range, the DOMs have multiple
ways to handle it. More detailed in-
formation can be found in [4]. Each
launched DOM outputs a continuous
charge measurement over time, which
is called the waveform. Section 2.3 will
explain the further handling of the data.

2.2 Measurement Principle

Neutrinos relevant for IceCube produce secondary relativistic particles, which move
faster than the phase velocity of light in ice. If this condition is fulfilled Cherenkov
light is emitted [18].
The wavefront forms a cone along the particles movement direction. The opening
angle of this cone is

cos(υc) =
1

nβ
(2.1)

depending on n, the refractive index of the surrounding medium and β, the speed
of the particle in units of the speed of light in vacuum. Figure 2.4 illustrates this
principle. These Cherenkov photons can move trough the clear ice, in average the
ice in IceCube has a absorption length of over 100m [23]. If the photons hit a
DOM they can be measured by the PMT.

2.3 Waveform and Pulses

A waveform is the most basic level of IceCube data. A higher level representation
of it are so called pulses. In this section we will look at both in more detail.
Each DOM measures charge. If a given charge threshold is surpassed, the DOM
launches. The waveform is the charge over time measurement of a single DOM.
The launched DOMs waveforms are then digitized and saved . For the digitization
two different ways exist in IceCube. First, the analog transient waveform digitizer
(ATWD) and second a continuously sampling fast analog digital converter (fADC).
The ATWD recording duration is 427 ns, with a sampling of 3.3 ns. Light within

7

Figure 2.4: Principle of a Cherenkov Cone, illustrated for a muon traveling with
nearly the speed of light, β = 0.95, in a medium with a refractive index of n = 6.31
[23].

0 2000 4000 6000

Time [ns]

0

5

V
ol
ta
ge

[m
V
] fADC

ATWD

(a) fADC and ATWD signal

200 400

Time [ns]

0

5
V
ol
ta
ge

[m
V
] ATWD

(b) ATWD signal

Figure 2.5: On the left the same signal once digitized by the ATWD and once
digitized by the fADC is shown. The fADC uses a sampling of 25 ns and measures
over a time window of 6.4µs. In comparison the ATWD uses a sampling of 3.3 ns
and measures over a shorter time window of 427 ns. On the right a closer look on
the ATWD signal is depicted.

tens of meters of a DOM can be measured. The fADC measures for a longer time
period of 6.4µs. Thereby the fADC samples with a rate of 25 ns, resulting in twice
as many steps as the ATWD [4]. The digitalizations and therefore data recording
can be triggered multiple times, especially the ATWD. The same signal digitized
by the two different digitizers is shown in Figure 2.5a. In Figure 2.5b a zoomed
version of the ATWD signal is shown.
A more compressed form of the digitized waveforms explained in the last paragraph
are the so called pulses. A pulse template is fitted to each significant peak. The
resulting pulse has charge and time information. In addition the width of each
pulse is stored. The corresponding pulses for the waveform shown in Figure 2.5a
are depicted in Figure 2.6. The pulses combine the information of both digitization
methods, the ATWD and the fADC [4].

8

0 2000 4000 6000

Time [ns]

0

2

4

V
ol
ta
ge

[m
V
] pulses

Figure 2.6: The corresponding pulses to the waveform depicted in Figure 2.5 are
illustrated.

2.4 Event Topologies in IceCube

Figure 2.7: Starting Track

In IceCube we have three main event
topologies: cascade, track and double
bang. Additionally we want to distin-
guish between incoming and starting
tracks, as subclasses of tracks. Event
views of these topologies are shown in
Figure 2.7 and Figure 2.8.
In an IceCube event view the detector is
indicated by all DOMs drawn as small
black dots. The DOMs that got hit dur-
ing the event are highlighted. Thereby
the size of the bubble correlates with
the total measured charge at the DOM.
The color symbolizes the time informa-
tion. Early hit DOMs are colored in
red, late hit DOMs in blue.

Cascades
Cascades are mainly produced by two different processes, either by charged current
interactions of electron neutrinos νe within the ice or by neutral current interac-
tions of neutrinos of any flavor [14]. In the case of charged current interactions
of electron neutrinos a light electron is produced. It looses most of its energy via
bremsstrahlung. This results in a hadronic and an electromagnetic cascade, which
appears nearly omni-directional with a radius of only a few meters depended on
the energy. The hadronic cascade produced by a neutral current interactions looks
very similar. Both result in an cascade-like event which shows up in the IceCube
detector as shown in Figure 2.8a.

9

(a) Cascade (b) Track (c) Double Bang

Figure 2.8: On the left a cascade-like event, in the middle a track-like event and
on the right a event with a double bang-like structure is presented. The primary
particle causing the cascade had an energy of 410TeV. The track is a through-going
muon caused by a muon neutrino with an energy of 342TeV. The primary tau of
the double bang had an energy of 7.6 PeV and is therefore very rare. Furthermore
the perfect contained signature of the event inside the detector is very idealized. On
the contrary however, the characteristics of a double bang event can be identified
more clearly.

Tracks
Tracks are only produced by muons µ. These muons originate from three different
processes, first of charge current interactions of muon neutrinos νµ second from
taus τ which decay into muons and finally from atmospheric muons. Muons have a
heavier mass than electrons and a long lifetime of about 2.19 µs [7]. As a result
they travel through the ice up to several kilometers [14]. Thereby they produce
Cherenkov light on their way, resulting in the track-like events as shown in Figure
2.8b.

Double Bangs
Double bangs can only originate from one process: a tau neutrino interacts via
a charged current interaction, a tau will be produced, which travels and decays
inside the detector. In about 82.5% of the cases the tau decay produces an electron
or a hadronic cascade [3]. If all parts are contained in the instrumented volume
this results in the unique structure of two cascades connected by a track. Such an
event is shown in Figure 2.8c. It is the optimal case, a much more realistic scenario
is depicted in Figure 2.9a. Here the track-like component is harder to identify
and the cascades overlap. The more energetic the incoming tau is, the longer is
its decay length. In IceCube it scales in average about 5 cm/TeV = 50m/PeV [3].
As a result, we hope to be able to detect tau neutrinos with IceCube starting at
energies of a few hundred TeV [3].

Coincident Events
In IceCube coincident events are events that have at least a second particle going
through the detector in the time window of the event. Such a secondary particle

10

(a) Double Bang (b) Cascade with an coincident muon

Figure 2.9: A more realistic double bang, compared to the one in Figure 2.8c, is
depicted on the left. It was caused by a tau neutrino with an energy of 4.3 PeV. A
event labeled as a coincident event is shown on the right. In the middle of IceCube
a cascade is located accompanied by a coincident muon. The muon is going straight
down and is marked in blue.

can for example be a muon or a muon-bundle. An exemplary event view is shown
in Figure 2.9b. A coincidence is a hint for the atmospheric origin of the event, due
to their common production in showers.

Starting Events
In general starting events are, as the name already suggests, events, whose initial
vertex is inside the detector volume. The exact definition also differs inside IceCube
and depends on the use case. The definition for this thesis will be clarified in
Section 5.2.2. The majority of the observed cascade-like events are also starting
events, due to their small spacial extension. Therefore this distinction is of greater
importance for track-like events. As a result one often sees a further split between
through-going or incoming tracks and starting tracks. For simplicity we will call
incoming tracks in the following short only tracks. An example of a starting track
is depicted in Figure 2.7.

11

12

3

C
h
a
p
t
e
r

Particle Physics

3.1 Neutrino Interactions

At energies relevant for IceCube all neutrinos and their anti-particles, independent
of their flavor, mainly interact in deep inelastic scattering. They do so in two
different ways, neutral current interactions (NC) or charged current interactions
(CC) [10].

νl +X → l + Y (CC) (3.1)

νl +X → νl + Y (NC) (3.2)

In the Equations 3.1 and 3.2 νl denotes a neutrino of flavor l, X is a nucleus, l the
corresponding lepton and Y symbolizes a hadronic cascade that is produced along.
In a CC interaction the weak force is mediated by a W boson and a charged lepton
is produced. In contrast, for NC interactions the weak force is mediated by a Z
boson [10].
Furthermore a third interaction has to be considered, the Glashow resonance,

ν̄e + e− → W−. (3.3)

An anti-electron-neutrino ν̄e scatters from the bound electrons of the molecules e−

and produces a charged W−. The latter can decay further into all leptons with
its corresponding flavored anti-neutrino or into hadrons. The branching ratio
for the W− to decay into hadrons is 67.60± 0.27%, to decay via leptons is hence
32.8±0.27%. Non of the flavors is preferred, so each has a probability of 10.8±0.09%
to occur [7]. This process is suppressed in most energy ranges. However, at an
energy of several PeVs, with a sharp peak at approximately 6.3PeV, the cross
section becomes considerably large [12]. Figure 3.1 shows the cross sections of all
three processes in the energy range that is relevant for IceCube. The difference
between the cross sections of neutrinos and anti-neutrinos becomes negligible for
high energies [11].

3.2 Tau Decay

In the charged current interaction of a tau neutrino a tau-lepton is produced

ντ +X → τ + Y . (3.4)

The lifetime of the τ , 29,06 ps, is very short [7]. The tau decay length in ice scales
with the energy 50 m

PeV
. Multiple ways for the tau decay exist. First it can decay

13

102 104 106 108 1010

Energy [GeV]

10−8

10−7

10−6

10−5

10−4

10−3

σ
[m

b
]

ν ν̄Charged Current

Neutral Current

Glashow Resonance

Figure 3.1: Cross sections for deep inelastic neutrino nucleon scattering via CC
and NC interactions and the Glashow resonance in the energy range relevant for
IceCube.

into the lighter leptons

τ− → e− + ν̄e + ντ (17.83± 0.04)% (3.5)

τ− → µ− + ν̄µ + ντ (17.41± 0.04)% (3.6)

which both have a probability to occur of around 17%. Otherwise the tau can
decay into different hadrons. The most important channels are denoted below.

τ− → π− + π0 + ντ (25.52± 0.09)% (3.7)

τ− → π− + ντ (10.83± 0.06)% (3.8)

τ− → π− + 2π0 + ντ (9.30± 0.11)% (3.9)

The anti-particle τ+ behaves in the same manner, where the corresponding equa-
tions can be derived replacing all particles with their corresponding anti-particles.
The information about the tau decay is based on [7].

14

4

C
h
a
p
t
e
r

Theory of Neural Networks

In this chapter we first discuss the role of neural networks in the broad field of
machine learning. Afterwards the basics of neural networks are explained in more
detail, followed by more advanced architectures needed in the context of this
thesis, namely residual units and inception units. Furthermore, the concept of
multi-task learning is explained. To conclude we present a common way to analyze
classification tasks, the confusion matrix.

4.1 Neural Networks in the Field of Machine

Learning

Machine learning is the approach to teach computers to solve problems based on
data without explicitly programming them. It is a broad field that summarizes many
techniques and algorithms. A common way of categorizing these is to discriminate
them based on the way they are learning. Generally one distinguishes between
supervised learning, unsupervised learning and reinforcement learning [27]. In the
following each of them is described shortly.

• Supervised Learning - In supervised learning a model’s prediction is eval-
uated through comparison with the correct solution, the ground truth [27].
Hence the correct solution to the given problem needs to be known. The
problems targeted with supervised learning are classification and regression
tasks. In regression tasks a continuous variable is predicted for example the
energy of a particle. If the outcome is of a discrete set it is a classification
task. One example is the categorization of images dependent on the shown
animal.

• Unsupervised Learning - As opposed to supervised learning, unsupervised
learning does not make use of direct feedback in terms of the correct solution.
Instead it tries to find hidden structures inside the data [27]. Typical use
cases for this type of learning are clustering problems, for example analyzing
customer data and grouping them.

• Reinforcement Learning - It is used in more dynamic environments where
a interactive behavior depending on the current situations should be learned.
Therefore a rewarding system that gives feedback to the model is implemented
[27]. For example if playing a game should be learned, the system will get
positive feedback if it wins and negative feedback if it loses. Based on
this feedback the model is adapted. One of the greatest breakthroughs of

15

reinforcement learning was AlphaGo developed by Google DeepMind. It won
against the worlds best player in the old Asian game of go. Before computers
were not able to compete with professional players in this game, due to the
huge amount of possible moves [32].

As our goal is to classify different event types in IceCube, we face a classification
problem which we will solve through supervised learning. From the variety of
algorithms used for solving supervised learning problems, we chose to work with
deep neural networks. They have shown great performance in recent years, especially
in the field of image classification tasks [24] [31], which our task is related to.

4.2 The Basics of Neural Networks

In this section a basic introduction to the theory of neural networks is given. This
shall enable the reader to understand the techniques used in this thesis more easily.
First this section discusses how a neural network can be built and which different
parts are needed. In a second step we introduce the different aspects of the training
process.

4.2.1 Building a Neural Network

A network is structured in a layer-wise manner. According to their position inside
the network, three layer types can be distinguished. The basic structure of each
network is composed of first an input layer, second, one or several, hidden layer(s)
and last an output layer.

• Input Layer - It is the first layer in a neural network. It has the same size
and dimension as the input data and acts as an interface between the data
and the rest of the neural network.

• Hidden Layer(s) - All layers between the input layer and the output layer
are so-called hidden layers. Their number is arbitrary. These layers process
the data and forward it to the final output layer.

• Output Layer - The final prediction of a neural network is given by the last
layer, the output layer. The shape of the output is predefined through the
sought-after solution to the given task.

Rosenblatt Perceptron
The Rosenblatt Perceptron is the most basic unit of neural networks. It was
developed and named by F. Rosenblatt in 1957 [28]. The perceptron mimics
a biological neuron, therefore it often is shortly called neuron as well. It is
mathematically described through

y = f

(

N
∑

i=1

wixi + b

)

, (4.1)

16

Figure 4.1: A schematic sketch of a Rosenblatt perceptron is shown. All inputs and
the bias get weighted and summed. Afterwards an activation function is applied to
the sum.

where y represents the output, xi a single input value, wi the corresponding weight,
b an added bias and f an activation function. i goes from 1 to N, where N is
the number of inputs. The activation function is chosen non-linear so non-linear
problems can be challenged, otherwise a neural network could be reduced to one
matrix multiplication. In the following paragraph the activation functions are
presented in more detail. A sketch of a perceptron is shown in Figure 4.1.

Activation Function
The activation function is applied to the sum of all weighted inputs. Due to its
non-linearity neural networks can solve non-linear problems. In most of the cases
it maps it’s input values into the range [0, 1] or [−1, 1] to stabilize the trainings
process. Two common activation functions, the sigmoid and hyperbolic tangent
functions [27], are depicted exemplary in the Figures 4.2a and 4.2b.
ReLu, short for rectified linear unit, is a term for a unit that uses the rectified activa-
tion function [6]. It is one of the most commonly used activation function. It maps
all negative values to zero and all positive values to themselves. Mathematically
simply expressed by

f(x) = max(0, x). (4.2)

An illustration is shown in Figure 4.2c.
For classification tasks the activation function for the last output layer of the
network is typically chosen to be the softmax function, which is defined as

f(xi) =
exp(xi)

∑k

j=0 exp(xj)
i = 1, ..., k , (4.3)

where k denotes the number of classes and xi the prediction for class i. A sketch
of the softmax function for two classes is depicted in Figure 4.2d. Its two main
characteristics are that all output values are in the range of [0, 1] and sum up
to 1. This two characteristics make a probabilistic interpretation possible, but its
meaning still needs some additional discussion. In classification tasks the class with
maximum softmax function output will be predicted as the solution class.

17

−5 0 5
x

0.0

0.5

1.0

y

sigmoid

(a) sigmoid activation function

−5 0 5
x

−1

0

1

y

tanh

(b) hyperbolic tangent activation function

−5 0 5
x

0

2

4

y

relu

(c) rectified activation function

−5 0 5
x

0.0

0.5

1.0

y

f(x1)
f(x2)

(d) softmax activation function

Figure 4.2: Four commonly used activation functions are depicted, on the top left
the sigmoid function and on the top right the hyperbolic tangent. On the bottom
left the rectified activation function is shown. On the bottom right the softmax
function for two possible classes is sketched.

18

Dense Layer and a Fully Connected Neural Network
The easiest layer form in a neural network is a dense layer. It consists fully out of
neurons/perceptrons arranged parallel to each other [31]. The neurons of each layer
i are connected to the neurons in the preceding i− 1 as well as the subsequent layer
i+1: the outputs of the preceding layer i− 1 thereby serve as input to the neurons
of the layer i, while the output of the neurons of the layer i serve as input to the
neurons of the subsequent layer i+ 1. In dense layers each neuron is connected to
all neurons in the subsequent layer, this is called fully-connected. If neurons are
only connected to neurons in subsequent layers and information is thus only passed
on in one direction we call this a feed-forward network. In case both requirements
are fulfilled, this results in one of the easiest forms of a neural network, a feed
forward neural network built fully out of dense layers. A schematic sketch of such
a network with two hidden layers is illustrated in Figure 4.3.

Figure 4.3: A schematic sketch of a fully connected feed forward neural network is
shown. The network has two hidden layers and consists of 16 neurons. Thereby
each neuron is connected to all neurons of the subsequent layer.

Convolutional Layers
A layer type that has shown excellent performance in recent years is the convolu-
tional layer. A detailed introduction may be found in [24] and [25].
Instead of using the output of every neuron in the preceding layer as input to
neurons in the following layer, as it is the case for fully connected layers, convo-
lutional layers extract features through filter operations. As a result they create
feature maps, that can be used as input for consecutive layers. By the filters spacial
relations are taken into account and the number of weights can be decreased.
The concept is based on the mathematical operation called convolution. In a
discrete two dimensional case the convolution operation may be defined as

(g ⋆ h) =
∑

τu

∑

τv

f(τu, τv)h(x− τu, y − τv), (4.4)

19

Figure 4.4: The general principle of the convolution operation in a two dimensional
discrete case is shown. The highlighted areas indicate the mapping of the input by
the filter to the output. The filter is of size 3× 3 and uses a stride of 1 in every
direction with no padding. This results in a transformation of the input size from
7× 7 to 5× 5.

where g symbolizes the input and h is the filter or kernel. The filter size is usually
a lot smaller than the input size. The idea of the convolution can be clarified very
well at the example of a two dimensional grey-scale image. It is may be understood
as the movement of a small filter over the whole image. Thereby, the filter output
at one position is the sum of the dot product of the image pixel lying below the
filter and the corresponding filter value at each filter position. Further the filter is
moved with a step size, this is called stride. Depending on the filter size the output
can have a different size than the input. A method to prevent that is to pad the
input with additional values, most of the time chosen as zero. The convolution
method is schematically depicted in Figure 4.4.
While we have introduced a discrete two-dimensional convolution above, the opera-
tion can be extended to both higher dimensions as well as the continuous case.
In a convolutional layer multiple convolutions with different filters are performed,
whereby each filter tries to extract a different feature. These are stacked afterwards.
The resulting set of filtered images are also called feature-maps. These can be used
as input for further convolutional layers.

Pooling Layers
Pooling layers are used to reduce the size of the neural network. A common pooling
type is ”MaxPooling” [30]. Instead of using a filter it uses a kernel that outputs
the maximum value of the observed area. Normally a stride is used such that the
kernels not overlap. If for example a 2 × 2 kernel is used the data shrinks by a
factor of four. An illustration of this principle is shown in Figure 4.5. Also other
pooling strategies exist, for example ”AvgPooling”. Here the average over the
observed area is the output.

20

Figure 4.5: The general principle of the MaxPooling operation in a two dimensional
case is shown. The highlighted areas indicate the mapping. The input is of size
4× 4 and the filter is of size 2× 2, this results in a grid of size 2× 2.

4.2.2 Training of a Neural Network

After the definition of the network structure, it has to be trained to solve a given
problem. During the trainings process the weights and biases of the network are
repeatedly updated in order for the network output to match the correct solution
as close as possible. The optimal weights are usually found by minimizing a loss
function, through back-propagation. The definition of a suitable loss function,
which will be explained in more detail in the next paragraph, is therefore essential
for a good performance.

Loss
The loss function L provides a measure of the ”quality” of the predictions of the
neural network and depends on the weights of the network, here denoted all together
as θ. The loss function evaluates the difference between the predictions p and the
correct solution q, the ground truth.
A common example for a loss function is the mean squared error [20], mathematically
described as

L(θ) =
1

N

N
∑

i

[p(θ, xi)− q(xi)]
2 , (4.5)

where N denotes the number of all evaluated events. The mean squared error loss
is mostly used for regression tasks and calculates the averaged sum of the squared
differences between the prediction and the ground truth.
A typical loss function for classification tasks is the categorical crossentropy [20]
defined as

L(θ) =
1

N

N
∑

i

n
∑

j

qj(xi) · log(pj(θ, xi)), (4.6)

where the ground truth q will be 1 for the correct class and 0 for all others. N
denotes the number of all evaluated events and n the number of classes. Hence
only the prediction p of the correct class contributes to the loss. The categorical
crossentropy penalizes all wrong predictions but especially those that are certain
but wrong. So the lower the predicted output for the correct class is, the higher
the contribution to the loss gets.

21

Optimizers
Multiple ways to update the weights based on the loss exist and are summarized in
the term optimizers. They provide strategies to efficiently update the weights of
the network to minimize the output loss and lead to stable convergence. We will
introduce two different algorithms in the following: gradient decent and Adam.
Gradient descent is one of the most important and basic algorithms for weight
adaptation in machine learning [29]. The output loss is minimized by iteratively
updating the model parameters θ in direction of the gradient of the loss dL

dθ
. The

update steps are scaled through the constant learning rate α, resulting in

θi+1 = θi − α
dL

dθi
, (4.7)

where i denotes the number of the respective iteration step. The gradient descent
algorithm is not guaranteed to find a global minimum nor does it find a minimum
the fastest way possible.
The Adam optimizer is a more advanced version of the gradient descent algorithm.
The main difference to basic gradient descent is that the learning rate α is not
constant. Instead it is adapted during the training process to fit the change of the
weights to the current situation. The update of the learning rate is based on both
the averages of the first and second moment of the gradient. The Adam algorithm
has empirically proven to work very well for a large variety of problems and efficient.
More details on Adam can be found in [22].

Regulators
An important aspect of training neural networks is the stability of the training
process. A variety of methods to improve the training procedure, called regulators,
exist. In the following we introduce two of them, dropout and batch normalization.
Dropout is utilized to improve the generalization of a neural network while training.
In each training step a given percentage of neurons, the drop-out-rate, is randomly
selected and dropped. This means they are neglected completely in this training
step and do not contribute to the output. The dropout of neurons forces the
units to learn similar or the same features redundantly, which can lead to better
generalization and furthermore prevents overfitting [33].
The goal of batch normalization is to accelerate the training of the neural network
by reducing the internal covariance shift [19]. This is achieved by performing an
additional step between layers, in which layer outputs are normalized. In the
context of this thesis normalization refers to a transformation of the data to zero
mean and unit variance.

Control the Training Process
If a network is big enough and trains long enough it will be able to predict the data
used for training perfectly. On the counter side it performs bad on unknown data
because the network does not generalize very well. This effect is called overtraining.
To prevent overtraining the dataset is commonly split into three different parts:
a trainings set, a validation set and a test set. The trainings set is used for the
actual training. The validation set is used for monitoring while training. One

22

way is to apply a network to the validation set after each epoch. If the loss on
the validation set increases compared to the previous epoch this is a sign for
overtraining. Therefore training is stopped at the minimum of the so called valida-
tion loss. The test set is only used once on the fully trained network for all final tests.

4.3 Residual and Inception Units

4.3.1 Residual Units

Residual units have first been introduced by Microsoft in 2015 through their neural
network ResNet, which won the ImageNet competition [15]. The basic idea behind
residual units is that one can build deeper and deeper network structures with the
minimal condition not to impair the neural network by an additional layer.
In general, a complete network layer can be described as a function y = f(x), where
the network learns the function f and x and y symbolize the input and output.
For a residual unit an additional connection with the most simple function, the
identity function id(x) = x, is added. The resulting structure, compare Figure 4.6,
can be expressed as

y = f(x) + id(x). (4.8)

Identity connections enable layers to only learn additions to the previous layers.
The layer does not have to learn how to keep the previous status. In order for
the residual units to learn incremental features we have to initialize the layers
weights close to zero. Another advantage of neural networks which consist mostly
of residual units is, that they suffer less from vanishing gradients, as the identity
connection propagates the gradient through the model.

Figure 4.6: A sketch of the working principle of a residual unit with two layers is
depicted.

23

4.3.2 Inception Units

Inception units were introduced by Google end of 2014. Several versions have been
developed, each iteratively improving upon the previous one. The three different
versions together with their corresponding papers are listed below:

• Inception v1 [35]

• Inception v2 and v3 [36]

• Inception v4 and InceptionResNet v1 and v2 [34]

The general problem inception units target is that for a convolution the size of the
filter has to be chosen beforehand. However, depending on the situation different
filter sizes have different advantages. The inception units overcome this problem by
providing the network a variety of filter sizes. This way they train the network to
learn, which of the filter sizes it needs and how to combine the gained information.
The naive concept of one inception unit is shown in Figure 4.7. The unit uses a
1× 1-convolution, a 3× 3-convolution, a 5× 5-convolution and a 3× 3-max-pooling
operation at the same time. Afterwards the individual convolution outputs are
concatenated and can then be used as input for further inception units. This naive
approach is however computationally extremely expensive, hence a more efficient
version adding 1 × 1-convolutions to decrease the computations was introduced.
The 1× 1-convolutions lead to a dimension reduction before the bigger and more
expansive convolutions are performed [35]. This was the overall first version (v1)
also named GoogLeNet.
Version v2 and v3 mainly improved upon the accuracy of version v1 while decreasing
the computational cost at the same time. The main change between the versions
was the splitting of convolutions into several smaller ones. 5× 5-convolution can
for example be split into two 3 × 3-convolutions. The 5 × 5-convolution is 2.78
times more expansive than one 3× 3-convolution [36].
Lastly, Google combined the two concepts of inception units and residual units to
create the InceptionResNet v1 and v2. The main idea here is to add an identity
connection around the inception unit. Three different InceptionResNet modules,
A, B and C, exist, they mainly differ in the number and the size of performed
convolutions.They are depicted from left to right in Figure 4.8. Further those
architectures have a stem at the beginning of the model and reduction blocks to
adapt the sizes between the different modules. The exact details can be found in
[34].

24

Figure 4.7: The sketch of a naive implementation of the basic inception unit is
shown. Four different operations are performed simultaneously. The results are
concatenated before passing them on to the subsequent unit [35].

Figure 4.8: The three different modules A, B and C of the InceptionResNet v1 are
depicted from left to right [34].

25

4.4 Multi-Task Learning

In multi-task learning, short MTL, the neural network performs several tasks
simultaneously instead of only one. For example a network may classify an animal
shown in a picture while reconstructing the direction in which the animal is looking
at the same time.

One way of MTL is to share a large part of the neural network, which is therefore
forced to learn a more general representation of the given problem, and then have
task specific layers on top. This technique is called hard parameter sharing [8]. A
schematic sketch of MTL using hard parameter sharing is shown in Figure 4.9.

Figure 4.9: General idea of MTL: the neural network consists of shared layers,
layers that are common to all tasks, and specific layers, that only belong to a
specific task. The shared layers learn a general representation of the problem, while
the task specific layers are supposed to add the features needed for the specific
task.

As loss functions are usually defined task specific, we need a new way of handling
the loss for the network in MTL. To train for several tasks within one neural
network at once, we need to combine the single loss functions to one main loss. A
very simple way to do so is by adding up the single losses and introducing weights
for each loss component. In order for this aggregated loss function to stay in the
same order of magnitude as a single loss function one can further divide the sum
by the number of aggregated loss functions. By that we get

Lmain =
1

N

N
∑

i=1

wiLi, (4.9)

where N is the number of single loss functions, wi the weight corresponding to the
loss function Li.

26

4.5 Confusion Matrix

A good way to analyze classification tasks is to use so-called confusion matrices.
In the following we want to introduce them and discuss how they can be interpreted.

The potential solutions of each classification task belong to a finite set of classes:
each event originates from one class and is classified by the neural network as one
class of this finite set. Therefore it is possible to create a matrix with one axis
corresponding to the ground truth and one to the predictions. The size of the
matrix will be n× n, where n denotes the number of classes.
In case the predicted class and the ground truth coincide, an event will be sorted
into a diagonal entry of the confusion matrix. Thus, in general, a classifier works
fine if the matrix has the majority of its entries on the diagonal axis, because this
means that the events have been classified correctly.
Let’s consider an exemplary image classification task in which we distinguish be-
tween images of cats, dogs and birds. This task results in a confusion matrix of size
3× 3. One possible event is an image of a dog. Let’s assume the network falsely
classifies the dog as a cat. The corresponding matrix and the sorting of the case
are sketched in Figure 4.10.

Figure 4.10: A exemplary confusion matrix and the sorting of one specific image is
illustrated. The image shows a dog which was classified as a cat.

The final matrix represents the total number of events and their corresponding
combinations of ground truth and prediction. For easier interpretation the confu-
sion matrix can be normalized. There are two different ways to do so: first one
can normalize on the ground truth, motivated by the fact that each event has to
belong to one class. Second, one can normalize on the predictions, as each event
has to be predicted as one of the classes. The normalized confusion matrices for our
example classification task are schematically shown in Figure 4.11. The confusion
matrix normalized on the ground truth values can be interpreted as how many of
the actual events of this class were found. We will call this fraction of correctly

27

(a) Confusion matrix normalized on the
ground truth

(b) Confusion matrix normalized on the
predictions

Figure 4.11: The difference between the two normalization methods are illustrated.
On the left, the confusion matrix is normalized on the ground truth. The confusion
matrix on the right is normalized on the prediction.

identified events the accuracy. The confusion matrix normalized on the prediction
values in contrast can be seen as the percentage of predictions which were actually
correct for this class. The fraction of correct predictions is also called the precision.
Let’s look at our example again to clarify the difference between the two normaliza-
tion methods: a very simple algorithm that predicts always dog independently of
the input, will classify all given dogs as dogs. It achieves an accuracy of 100% for the
class dog . This seems nice at the first glance, but the precision of these predictions
will be bad. It will equal the fraction of dogs inside the dataset. If the classes are
distributed equally, this will result in a precision of 33.3%. Therefore one should al-
ways use both normalization methods to interpret the results of a classification task.

28

5

C
h
a
p
t
e
r

Specification of the Dataset

In this chapter we introduce our dataset. First we discuss specifics of the IceCube
data especially for their use with neural networks. Further we define the labels
of all tasks needed in the training process. The baseline of the dataset and the
event selection are outlined next. Finally the properties of the resulting dataset
are described and the impacts of the dataset composition are discussed.

5.1 Specifics of IceCube Data for Neural

Networks

In its rawest form IceCube data for one event consists of multiple charge over time
measurements, one for each launched DOM. The DOMs are arranged in a three
dimensional grid. The input data is therefore four dimensional. This leads to two
main issues: first the dimensionality of the data and second the large size of the
data.
High dimensional data results in many weighted connections in a neural network
which in turn makes it hard to train a stable model on it. Additionally a four
dimensional convolution method would be needed, which is not standardly available
yet. Further there are doubts if they are even numerically stable. Hence other
approaches are needed.
The second challenge we face is the sheer size of the data for a single event. Using
the smaller ATWD digitization each lunched DOM has a time series of 128 measured
charges. For 5160 DOMs this results in 5160× 128 = 660, 480 inputs for a single
event. Training such a network is quite complex and in addition a lot of sample
events are needed.
One approach to deal with this situation is the use of recurrent neural networks
(RNN). They do not solve the second problem but deal with the time component
more naturally. Due to a harder numerical implementation and a more fundamental
strategy we did not use them. A second approach is the use of three dimensional
convolutions on beforehand calculated features. The second option was chosen as
this will also further narrow down the data size. The details on the calculated
features will be explained in Section 5.1.1. Further the three dimensional grid was
rearranged to narrow down the data even more. This is described in Section 5.1.2.

5.1.1 Input Features

By calculating specific features, used for input we are reducing the amount of data.
These features can than be stacked together similar to the RGB values in image

29

classification tasks. The input size is therefore reduced to 5160× n, where n is the
number of input features. Chosen input features will be described in detail in the
following.

Quantiles
To achieve less input values the discretization of the waveform is downsampled.
One could for example take only every second data point, this would equal a longer
sampling time. Or the combination of several points for example by averaging
them is another possibility. In this work we used a different approach. To get
more detailed information in interesting areas, we utilized charge quantiles. More
precisely, time information at which a given percentage of the total charge of each
DOM was collected was calculated. An illustration of this digitization is shown in
Figure 5.1a. A problem when using the waveform is that due to jitter it also has
negative charge entries. To calculate the quantiles we therefore handled all charge
entries as absolute values. When using pulses instead of a waveform this problem
disappears automatically including all further characteristics jitter may introduce.
A comparison once using the waveform and once using pulses is shown in Figure
5.1b.
A problem when using the ATWD information alone is that only a small time
window of the event is covered. Hence the pulses can contain more information,
often these are stored in a second ATWD series. At first we only used the first
ATWD series. This difference can also seen in Figure 5.1b where the quantiles
based on pulses show more late entries, corresponding to a pulse which is not in
the ATWD series. A further divergence is introduced because the pulses were used
without their width, therefore all entries of one pulse are at the same time. Also
the distortion introduced by jitter vanish. This can be seen best at the three latest
quantiles based on the ATWD waveform.

0 200 400

Time [ns]

0

5

V
ol
ta
ge

[m
V
] ATWD

quantiles

(a) Charge Quantiles

0 1000

time [ns]

0

50

100

p
er
ce
n
ta
ge

[p
ct
]

waveform based
pulses based

(b) Comparison of quantiles

Figure 5.1: On the left the ATWD waveform of Figure 2.5b is shown again. The
times calculated as charge quantiles are marked. On the right a comparison of the
calculated input times once based on the ATWD waveform and once on the pulses
is depicted.

30

Additional Features
Below some additional features are listed. They have been tested in training as
complementary input to the charge quantiles and alone. In the final architectures
only the total charge per DOM was used.

• Total charge

• Time of the first charge

• Number of pulses

• Height of the first charge

• Time spread

• ...

5.1.2 Grid

The grid of IceCube, as described in detail in Section 2.1, is irregular. A schematic
sketch of the top view on the strings of the InIceArray is shown in Figure 5.2a. For
simplification DeepCore is excluded for now. To reduce complexity for the neural
network and to work efficiently, a compact representation of the grid has to be
found, while several requirements need to be fulfilled. First, neural networks work
with matrices. In the three dimensional case this is a cube. The cube should be as
small as possible while at the same time maintaining as much spatial information
as possible.
To stick with the exact position of each string, as in Figure 5.2, we need a grid of
the size 20× 10× 60. This representation introduces permanent vacancies inside
the grid. They are an additional characteristic the neural network has to learn to
cope with. However by this representation the neighborly relations of the strings
are represented in more detail. This situation is sketched in Figure 5.2b.

0 10
x

0

5

10

y

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67

68 69 70 71 72 73 74

75 76 77 78

(a) Schematic IceCube grid out of the
top view

0 10
x

2.5

5.0

7.5

y

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67

68 69 70 71 72 73 74

75 76 77 78

(b) Same grid than in Figure 5.2a but the
vacancies are highlighted

Figure 5.2: A sketch of the top view of the IceCube strings is depicted. The grid
was rotated so that the the horizontal lines match with the direction of the x-axis.
DeepCore is excluded. On the right side additionally the vacancies are highlighted
by the green dots.

A more compressed representation of the grid can be found if we shift strings in the
x-direction, the y- and z-direction can thereby stay the same. We came up with

31

0 10
x

0

5

10

y

3231

53 57

40

21

4

78

43

7

65

46

29

68

33

16

36

58

41

61

44 48

12

69

34

15

73

37

24

62

49

13

52

74

20

3

77

25

64

28

50

1

8

22

9

66

17

59

45

38

54

5

47

10

70

75

26

19

42

63

14

30

56

35

72

51

2

23

67

18

60

39

55

6

11

76

27

71

(a) Version A

0 10
x

0

5

10

y

3231

53 57

40

21

4

78

43

7

65

46

29

68

33

16

36

58

41

61

44 48

12

69

34

15

73

37

24

62

49

13

52

74

20

3

77

25

64

28

50

1

8

22

9

66

17

59

45

38

54

5

47

10

70

75

26

19

42

63

14

30

56

35

72

51

2

23

67

18

60

39

55

6

11

76

27

71

(b) Version B

Figure 5.3: The top view of the rearranged grid in version A and B are shown.
Version B is the smallest possible representation while maintaining the neighbor
ship relations of the single strings better than version A.

two different solutions for the compressed representation which are both depicted
in Figure 5.3. For version A the strings are rearranged in a way that the lower left
side, strings 1, 7, 14, 22 and 31 are mapped to the same x-value on the outer left.
The same is performed for the upper right border, strings 50, 59, 67, 74 and an
imaginary string 80, are pushed to the outer right. This way the horizontal lines
are pushed to their corresponding sides to match at the outside. The grid shrinks
to the size of 11× 10× 60. The direct neighbors of each strings are nearly fully
maintained. If we push the horizontal lines of strings in an alternating pattern
to the left and right it result in version B. In comparison to version A the grid
decreases even further to the size of 10×10×60. While direct neighbors are equally
well preserved in version B as in A, the relation between farer strings improves
further. As an example lets look at the three strings 1, 14 and 16. In IceCube,
Figure 5.2, string 1 is equally far away from the strings 14 and 16, this holds also
for version B, Figure 5.3b, but not for version A, Figure 5.3a.
In Figure 5.4 a comparison of one concrete event once based on the original IceCube
grid and once based on the grid version B is illustrated. The event based on the
new grid, Figure 5.4b, can be clearly identified as the corresponding event, Figure
5.4a. The differences in the color coding are handmade and indicate no difference.
A slight difference can be seen in the cascade in the lower layers, in Figure 5.4b,
based on the grid version B, the cascade seems a bit more starched to the sides.
For the rest of this thesis we will use grid version B as it is most effective in reducing
the size and keeps at the same time a maximum of detector symmetry.

32

(a) Original IceCube Grid (b) Grid Version B

Figure 5.4: A comparison of one event once based on the original IceCube grid,
shown on the left, and once based on the grid version B, depicted on the right, is
shown.

5.2 Label Definitions

In supervised learning the ground truth, the correct output to the given problem
is of main importance. It is responsible for the feedback the neural network gets
during the training process. For each task a network should learn, a specific
corresponding label has to be defined.
In our case the network will learn to predict a label corresponding to a specific
event type. In the following section it will be explained how labels are assigned to
the different event types.

5.2.1 Event Topologies

To assign the labels for the different event topologies we followed a two-level process.
The events were at first distinguished as fine as possible. In a second step we
recombined them into the classes that actually should be distinguished by the
classifier.
On the finest level, we differ between the following event types:

• Neutral Current Interaction (NC)

• Cascade

• Starting Track

• Stopping Track

• Through-Going Track

• Double Bang

• Stopping Tau

• Glashow Cascade

• Glashow Track

• Glashow Tau

The event types have been explained in more detail in Section 2.4 as well as Chap-
ter 3. To distinguish between the above mentioned types the information provided

33

Event Classification Label
Neutral Current Cascade
Cascade Cascade
Through Going Track Track
Starting Track Starting Track
Stopping Track Track
Double Bang Double Bang
Stopping Tau Double Bang
Glashow Cascade Cascade
Glashow Track Track
Glashow Tau Cascade

Table 5.1: The allocation of the ten different event types to the different labels is
shown.

in the Monte Carlo simulations for each event was exploit. The corresponding
decision process is sketched as a decision tree in Figure 5.5. Here we classified the
events based on their type of interaction, their flavor of the produced lepton and
their eventual further decay. Finally the events signature inside the detector was
deciding.
The second step, the recombination is necessary because the different event types
can’t be distinguished well enough on the finest level. Which labels are assigned to
which event type is summarized in Table 5.1.
We further relabeled according to two additional criteria not included in Table 5.1.
Events labeled as starting tracks that have a track length inside the instrumented
volume of less than 50m were relabeled as cascades. Also events labeled as double
bangs were relabeled according to their tau decay length. All events with a tau
decay length of less than 5m were also labeled as cascades.

5.2.2 Further Classes

Simultaneously to the event topology class the events can also be classified in
further categories. Their definitions are explained below.

Starting
An event is classified as a starting event if the vertex of the event is inside a
predefined volume. This volume is normally the volume of the InIceArray, but it
can be changed by padding it’s surface. If nothing else is mentioned no padding
was used.

Coincident Events
An event is classified as a coincident event if a second primary particle is hitting
the detector inside the trigger window.

34

Figure 5.5: A visualization of the decision tree used to distinguish the different event types is illustrated. The grey boxes depict a
split, on the axes the respective characterization is shown. The blue oval nodes depict the event types on the finest level. First we
consult the interaction type, followed by the type of the charged lepton. For charged current interactions producing a tau its decay is
examined. In the last stage, the signature of the event inside the detector gives the information about the final event type.35

5.3 Properties of the Monte Carlo Simulation

To obtain our dataset we used Monte Carlo simulations produced by Nancy Wand-
kowsky for the IceCube collaboration. To be clear which simulations were used, the
directories of the respective simulation files at the IceCube cluster in Madison are
listed in the Appendix A.1. The corresponding simulation parameters are given in
Table 5.2. The simulation was done for all three flavors. Around 15% of the events
have a coincident CORSIKA background. In this thesis we use a Monte Carlo
with energies between 5TeV and 50PeV. The data was prepared with IceCubes
processing up to level 2.

Parameter Name

Generator NuGen
Photon Propagator Clsim
Ice Model Spice 3.2 [2]
Hole Ice Model Dimas flasher-fit-model (p1=0.3, p2=0)
DOM Efficiency 0.99

Table 5.2: The parameters used for the simulations are presented.

5.4 Event Selection

Only events where at least one simulated particle hit the instrumented volume were
selected. Also events where all particles missed the detector closely, such that light
still could be seen, were cut. Thereby we obtained well contained event topologies,
to not confuse the classifier at first.
Additionally the composition of the dataset was adjusted, events depending on
their label were selected. Goal of this procedure was to have a dataset with good
properties for training. Thereby the dataset should be as big as possible, while
maintaining a suitable ratio between the different labels. A two-level procedure
was found to be very useful. First a large base dataset is created. In this step all
time-consuming calculations, like the adaption to our grid or the calculation of the
various input features, were done. In a second step a further selection is performed.
The goal is to obtain a fine tuned dataset for training. As the work on this thesis
showed it is helpful to have the opportunity to change the final composition of the
dataset in a reasonable time. Therefore this two-level approach is good, because
the expansive computations are not needed over and over again. For fine tuning
only the second selection step needs to be done again.
The percentages of each event class that were kept in the first step are listed in
Table 5.3. The full base dataset consists of around 6,500,000 single events. In the
second step we again applied filters that only kept specific percentages of each class,
these are also listed in Table 5.3. For true neutral current events and true cascades
a variable percentage was used. It depends on the primary energy of the neutrino.
The goal of this variable percentage was to obtain more high energetic cascades

36

as a counterweight to the double bangs. Also for true double bangs we applied to
different filters. For double bangs with a tau decay length smaller than 5m only
1% was kept, while for all longer ones we kept all. The resulting distributions can
be found in the following Section 5.5.

Event Classification Step 1 Step 2
Neutral Current 21 % (24.75× log10(Energy) + 35.25) %
Cascade 18 % (24.75× log10(Energy) + 35.25) %
Through Going Track 9 % 20 %
Starting Track 35 % 20 %
Stopping Track 10 % 20 %
Double Bang [< 5m, ≥ 5m] [100, 100] % [1, 100] %
Stopping Tau 100 % 100 %
Glashow Cascade 100 % 100 %
Glashow Track 100 % 100 %
Glashow Tau 100 % 100 %

Table 5.3: The percentage of each event type we kept in our dataset in the first
and second selection step are presented.

5.5 General Properties of the Dataset

5.5.1 Training, Validation and Test Set

The whole dataset consist out of 2,841,632 independent events. We further divide
the set into a training, validation and test set.

Set Number of Events Percentage of the Dataset

Training Set 1,989,142 70 %
Validation Set 426,245 15 %

Test Set 426,245 15 %

Table 5.4: Composition of the whole dataset according to its purpose in the training
process.

5.5.2 Event Distributions in the Dataset

The number of events per class in the dataset on the finest level are not equally
distributed, as can be seen in Figure 5.6. The distribution which results from
relabeling the classes according to Table 5.1 are shown in Figure 5.7. The same
distributions for the starting and coincidence label are shown in the Figure 5.8a
and Figure 5.8b, respectively.

37

N
eu
tr
al

C
u
rr
en
t

C
as
ca
d
e

T
h
ro
u
gh

-g
oi
n
g
T
ra
ck

S
ta
rt
in
g
T
ra
ck

S
to
p
p
in
g
T
ra
ck

D
ou

b
le

B
an

g

S
to
p
p
in
g
T
au

G
la
sh
ow

C
as
ca
d
e

G
la
sh
ow

T
ra
ck

G
la
sh
ow

T
au

Event Type

0

200000

400000

600000

800000

N
u
m
b
er

of
E
ve
n
ts

604447

715710

818964

449573

44491

203209

0 0 2372 2866

Figure 5.6: The distribution of the event type labels on its finest level is shown.

Ca
sca

de

Th
rou

gh
-go

ing
Tr
ack

Sta
rti
ng

Tr
ack

Do
ub
le
Ba

ng

Event Type

0

1000000

N
u
m
b
er

of
E
ve
n
ts

1369844

865827

417912
188049

Figure 5.7: The same distribution as in Figure 5.6 after relabeling the events,
according to Table 5.1, is presented.

38

Sta
rti
ng

Ev
ent

s

Inc
om

ing
Ev

ent
s

Event Type

0

2500000

#
of

E
ve
n
ts

1976134

865498

(a) Starting Label

Co
inc

ide
nce

Ev
ent

s

Sin
gle

Ev
ent

s

Event Type

0
2500000

#
of

E
ve
n
ts

425673
2415959

(b) Coincidence Label

Figure 5.8: The distributions of the starting and coincidence label of the whole
dataset are plotted.

5.5.3 Distribution of Physics Parameters

The distributions of the most important physical parameters of the dataset will be
shown in the following. For most quantities the distribution is shown twice, once
for all event types on the finest level and once for the event types after relabeling.
For the event types on the finest levels ”Stopping Taus” and ”Glashow Cascades”
can not be found in the distributions, because there are no such events in the
dataset, as can be seen in Figure 5.6.
First the number of events in the dataset against number of hit DOMs in the
InIceArray is presented, in Figure 5.9. Additionally for all track-like events the track
length inside the detector is shown in Figure 5.10 and for all events involving a tau,
the tau decay length is presented in Figure 5.11. Further distributions, including
the number of events against the deposited energy, the inelasticity, the zenith and
azimuth and the energy of the first particle can be found in the Appendix A.2.

39

0 250 500 750 1000 1250 1500 1750
Number of hit DOMs in IceCube

100

101

102

103

104

105

N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

0 250 500 750 1000 1250 1500 1750
Number of hit DOMs in IceCube

100

101

102

103

104

105

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure 5.9: Distributions of the whole dataset against number of hit DOMs in the
InIceArray once split for all event types and once for the event types which should
be classified.

40

0 200 400 600 800 1000 1200 1400

Track Length inside the Detector [m]

100

101

102

103

104

N
u
m
b
er

of
E
ve
n
ts

Through-going Track

Starting Track

Stopping Track

Figure 5.10: The track length inside the detector for all track-like event types is
shown.

0 25 50 75 100 125 150

Tau Decay Length [m]

100

101

102

103

104

N
u
m
b
er

of
E
ve
n
ts

Through-going Track

Starting Track

Stopping Track

Double Bang

Figure 5.11: For all events including a tau the corresponding tau decay length is
shown.

41

5.6 Impact of the Dataset Composition

The impact of the dataset composition on the final classification results can be
significant. Therefore we first discuss how an optimal dataset should look like and
which effects may introduce biases. In the following, we will outline the experiences
we gathered during the work on this thesis with respect to the underlying dataset.

From a theoretical point of view an optimal dataset should be as diverse as pos-
sible. That means, every aspect that should get learned should be represented
in as many different ways as possible. Thereby a good generalization becomes
achievable and every detail that is needed to perform the given task can be learned.
Further, the dataset composition should not introduce any external bias. A bias
can for example be introduced by having an imbalance in the number of events per
class. Furthermore, the classes among themselves should be similarly distributed in
quantities, that can effect the classification. Last the dataset should be sufficiently
large, the more events are available the better.

The first thing we encountered was that we had defined our labels to roughly. The
label definitions led to events that basically looked the same but had different
ground truths. As a result the network got confused as it was shown the same data
but told that the events belong to different classes. We saw a tremendous boost in
defining the ground truth more carefully.
In a next step we forced minimal requirements for specific classes. If they were
not fulfilled we relabeled those events. Two examples should clarify our relabeling
strategy: we forced a minimal track length of 50 m inside the detector for starting
tracks if not they were labeled as cascades. Secondly, for an event to be labeled as
a double bang a tau decay length of more than 5m was necessary, if not they were
also relabeled as cascades. This step can be seen critical, due to the change of the
ground truth for difficult events only. On the other side the relabeling can be seen
as a further tuning of the class definitions as it is nearly impossible to distinguish
these event topologies. The events relabeled are close to the resolution of IceCube.
In a third run, we additionally forced a nearly equal distribution of labels with
regard to the event type class. Thereby we wanted to avoid any bias to any specific
class. However, this wasn’t sufficient for our task. Due to the characteristics of the
classes biases were still introduced. For example, double bangs got over predicted
in case many DOMs had been hit in the detector while no cascades got predicted
for these cases. On the other hand cascades got heavily over predicted for few
hit DOMs. By enforcing the same amount of cascades and double bangs in the
dataset, the number of true double bangs was a lot higher than the number of
true cascades in the regime of many hit DOMs. Therefore, we guess that a more
uniform distribution of the events with respect to the number of hit DOMs for
each class would be beneficial for the classification task we face.
In a final step we corrected the distribution of events in hit DOMs within one
class to be more uniform. This has only been done for the class of cascades to
obtain more of them in the regime of many hit DOMs. By doing so we provided
the network with more training events in the regime important for the distinction

42

of double bangs and cascades, where the network had previously struggled. Due to
time reasons no further dataset was created. Hence extending this approach to the
remaining classes and forcing an even more similar distribution among the classes
offers potential for further improvements in the future.

43

44

6

C
h
a
p
t
e
r

The Classifier

In this chapter the final version of our classifier is discussed. The term classifier
represents the deep neural network that is trained to perform our different classifi-
cation tasks. The chapter starts by introducing its architecture and the training
process it was passed through. Further the results of each classification task are
presented individually. The classifier performs an event topology classification, a
starting event identification and a coincident event identification simultaneously.
Generally the results of the classifier will be shown in form of a confusion matrix.
The concept of a confusion matrix and its normalizations is explained in Section 4.5.

6.1 Specification of the Classifier

6.1.1 Input

As described in Section 5.1.1, we used charge quantiles calculated in 5% steps as
input to the network. Individual quantiles are stacked behind each other. Finally
we appended the total charge measured at each DOM. Thereby the neural network
can easily distinguish between hit and non hit DOMs. Each quantity is arranged
according to the grid version B, which was described in Section 5.1.2. Hence this
results in an input of size 10 × 10 × 60 × 21. Further, each input quantity was
normalized to have a mean of 0 and a standard deviation of 1.

6.1.2 Architecture

The architecture of the final neural network used is based on the IncResNet v2 of
Google [34]. An introduction to the architecture was given in Section 4.3.2. More
comprehensive information can be found in [34], [35] and [36].
After the input layer we first perform five three dimensional convolutions each
paired with batch normalization and two MaxPooling operations. Google calls this
first part of the neural network the stem. It is a simplified version of the stem
used by Google in [34], which was extended to three dimensions. Exact details on
the amount of used filters, their size and other parameters can be found in the
Appendix A.3.1.
The middle part of the network consists of one Inception-A block, followed by
seven Inception-ResNet-A blocks and one Reduction-A block. Additionally seven
Inception-ResNet-B blocks and one Inception-ResNet-C block are performed. Each
one similar to the version presented by Google in [34]. The main difference is the

45

change from two dimensional to three dimensional convolutions.
Because we perform three tasks simultaneously we have to copy this status of
the network three times for the final task-specific parts. Each task performs one
additional Inception-resnet-C block and one final three dimensional convolution.
For this final convolution the event type classification uses 1024 filters while the
starting identification and coincidence identification use 320 filters each. All tasks
end with an AveragePooling. This setup results in a total of 27,460,504 parameters.
A sketch of this setup is shown in figure 6.1.

Development of our Architecture
Our final architecture as described above evolved over time. This paragraph gives
a short outline of this development that led to the final architecture.

We started based on the results of Johannes Kager in [21]. He had shown that for
the purpose of event reconstructions in IceCube deep convolutional neural networks
are more suitable than conventional feed-forward neural networks. Also Mirco
Huennefeld already applied deep learning techniques to reconstruct muon neutrino
events in IceCube [17].
Many different versions of convolutional networks were tested. A broad exploration
on the effects of different hyperparameters was performed. Investigated parameters
included the size of the network, different input features, different loss functions,
optimizers and the extend of using different regularization methods. During our
tests we found that charge quantiles work well as input features. Furthermore, the
best results were achieved by using Adam as an optimizer. The use of residual
units led to a more stable architecture and training.
In a next step, considerable improvement was achieved by the introduction of
multi-task learning. This led to an increase in the overall accuracy due to a greater
generalization.
Our next modification of the architecture was inspired by Google’s InceptionResNet
v2 [34]. By using InceptionResNet blocks we achieved a better overall accuracy
while training a lot faster. The time needed to run one epoch decreased by a factor
of three. In addition, physical tendencies as we would expect them were matched
better. In the following of this thesis this is discussed in more detail.
The number of parameters in the final architecture is immense and training is
therefore prone to overfitting. The size of the current neural network was chosen
by simple testing. Architectures with more or less InceptionResNet blocks showed
no significant improvement.
Potential improvements and alternatives to the described architecture will be out-
lined in the outlook in Section 8.2.

6.2 The Training Process

For the training process of our network we used the Adam optimizer and batch
normalization for regularization, as introduced in section 4.2.2. Adam was used

46

Figure 6.1: The architecture of the classifier is sketched. The network consist out of three main parts: the stem, a block of seven
Inception-ResNet-A modules and a block of seven Inception-ResNet-B modules. They are connected by an Inception A module and
later by a Reduction A block. Before the split into task-specific layers one Inception-ResNet C module is performed. For each task
one further Inception-ResNet C module and one three dimensional convolution as well as an AveragePooling layer is finally added.
The small number for convolutional layers represent the number of filters used.

47

with its default parameters. Our choice of all further hyperparameters can be found
in the Appendix A.3.2.
In one epoch the full trainings dataset is used. It takes about 33 h on three GPUs
(GeForce GTX 1080 Ti).
For the evaluation of the training process we distinguish between a main loss, that
includes all tasks and task specific losses. To calculate the main loss, according to
Section 4.4, all tasks were weighted equally by wi = 1 and N was chosen as well as
1. Each loss is further spitted into a trainings loss calculated for the trainings set
and a validation loss calculated based on the validation set. Figure 6.2 shows a
summary of all losses. A more detailed view of each task-specific loss is illustrated
in the Figures 6.3a, 6.3b and 6.3c.

1 2 3 4 5 6 7 8
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

L
os
s

Event Type Loss

Starting Loss

Coincidence Loss

Total Loss

train. set

vali. set

Figure 6.2: The losses of training and validation set for the main loss and all
individual tasks are shown.

Figure 6.2 shows a rapidly decreasing main loss in the beginning. The main training
loss and the main validation loss already reach the same level after the second
epoch. In the next epochs the main trainings loss decreases further, while the
main validation loss stays relatively constant, with only slight changes. The losses
diverge more and more. Starting at epoch eight we see an increase of the main
validation loss which is a clear sign of overtraining. This effect will get stronger
over time.
The task-specific losses show similar behavior during training as the main loss,
including the start of the overfitting. The event type loss contributes most to the
main loss, the starting loss least. The coincidence loss is nearly flat, which could
result from the unbalanced composition of the ground truth data in the dataset.

48

1 2 3 4 5 6 7 8
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
os
s

train. set

vali. set

(a) Loss of training and validation set for the event type classification only

2 5 7
Epoch

0.0

0.2

0.4

L
os
s

train. set

vali. set

(b) Loss of training and validation set for
the starting identification only

2 5 7
Epoch

0.0

0.2

0.4

0.6

L
os
s

train. set

vali. set

(c) Loss of training and validation set for
the coincidence identification only

Figure 6.3: Validation and training loss are presented once for each performed task:
on the top the event type classification losses are shown. On the bottom left the
losses for the starting identification are depicted and on the right the ones for the
coincidence identification.

49

6.2.1 Choice of the Final Neural Network

The decision upon which version of the neural network is finally used is normally
based on the main validation loss. Due to the fact that the individual tasks are
not equally important to us, this does not hold here. We also did not adapt our
main loss function to weight the task accordingly. Instead we defined our own
”performance score” based on the percentage of predictions that were correct. The
percentage of correct predictions was calculated for each task. The results are
sketched in Figure 6.4a. Afterwards the percentages were summed up. However, as
the event classification is most important to our evaluations, its percentage was
weighted with a factor of three. The resulting score for each epoch is shown in
Figure 6.4b.
Our best classifier achieved a performance score of 453.84. It uses the learned
parameters after five epochs. We use this network for all results discussed in the
following.

2 4 6 8
Epoch

80

100

R
ig
h
t
P
re
d
.
[%

]

E. T,

Start.

Coinci.

(a) Percentage of right predictions per task

2 4 6 8
Epoch

450.0

452.5

S
co
re

Performence score

(b) Performance score over all epochs

Figure 6.4: The percentages of correct predictions per task over the epochs is shown
on the left. On the right the resulting performance score is plotted.

6.3 Event Type Classification

In our event type classification task we want to distinguish four event topologies in
IceCube: cascades, tracks, double bangs and starting tracks. The event topologies
and exact label definition have been explained in Section 2.4 and Section 5.2.
Figure 7.7a and Figure 7.7b show the confusion matrices of the event type classifi-
cation once normalized on the ground truth of each class and once normalized on
the predictions of each class.

50

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.95 0.01 0.78 0.15

0.01 0.97 0.00 0.10

0.02 0.00 0.21 0.01

0.02 0.02 0.01 0.75

(a) ground truth normalized

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.86 0.01 0.10 0.04

0.02 0.93 0.00 0.04

0.39 0.00 0.57 0.03

0.06 0.04 0.01 0.89

(b) prediction normalized

Figure 6.5: The confusion matrices of the event type classification once normalized
on the ground truth of each class and once normalized on the predictions of each
class are presented.

The network achieves best results for the track class, 97% of them are found with
a precision of 93%. Nearly all their confusion is with the class of starting tracks.
Cascades are similarly well classified with an accuracy of 95% and an associated
precision of 86%. While the confusion with tracks is negligible, this isn’t the case
for double bangs and starting tracks. Only 21% of the double bang events are
classified as such and a prediction of a double bang is correct in 57% of the cases.
Double bangs are heavily confused with cascade events as double bang events are
classified as cascades in 78% of the cases. 75% of the starting tracks are identi-
fied correctly with an according precision of 89%. Starting Tracks are confused
with two classes, tracks and cascades. In the following we will look at the dif-
ferent confusions in more detail and investigate possible reasons for their occurrence.

We generally expect that events with more hit DOMs are easier to classify as events
with very few hit DOMs. This follows the simple intuition that if more has been
seen by the detector, more information is available to distinguish the events. The
accuracy and confusion as a function of the number of hit DOMs of the detector are
shown in Figure 6.6. Accuracy represents the fraction of correct identified events
of the corresponding class. In contrast, the confusion is the false positive rate, the
percentage of events that got falsely predicted as a specific class. Additionally the
number of events against the number of hits DOMs is shown.

It can be seen that the accuracy for cascades stays at nearly 100% over the full
regime. However the confusion is starting to rise counter-intuitively from 100 hit
DOMs with an increase in hit DOMs. This confusion comes from double bangs
which occur much more likely at large numbers of hit DOMs, see Figure 6.6f.
The accuracy for tracks is also constantly high except for small impairments for
both very few and many hit DOMs. The track confusion has its peak for few hit
DOMs. It decreases the more DOMs are hit before rising again at the end of the

51

1 2 3
log10(# of hit DOMs)

0
25
50
75
100

P
er
ce
n
ta
ge

[%
]

accuracy

confusion

(a) accuracy and confusion of true cascades

1 2 3
log10(# of hit DOMs)

102

#
of

E
ve
n
ts

statistic

(b) statistic of true cascades

1 2 3
log10(# of hit DOMs)

0
25
50
75
100

P
er
ce
n
ta
ge

[%
]

(c) accuracy and confusion of true tracks

1 2 3
log10(# of hit DOMs)

102

104

#
of

E
ve
n
ts

(d) statistic of true tracks

1 2 3
log10(# of hit DOMs)

0
25
50
75
100

P
er
ce
n
ta
ge

[%
]

(e) accuracy and confusion of true double
bangs

1 2 3
log10(# of hit DOMs)

101

103

#
of

E
ve
n
ts

(f) statistic of true double bangs

1 2 3
log10(# of hit DOMs)

0
25
50
75
100

P
er
ce
n
ta
ge

[%
]

(g) accuracy and confusion of true starting
tracks

1 2 3
log10(# of hit DOMs)

102

104

#
of

E
ve
n
ts

(h) statistic of true starting tracks

Figure 6.6: The accuracy and confusion as a function of the number of hit DOMs
together with the underlying statistic for each event type is presented. The accuracy,
confusion and statistics of each bin are shown in dark blue, light blue and black
respectively.

52

0 25 50 75 100 125 150 175 200

Tau Decay Length [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
ra
ct
io
n
of

E
ve
n
ts

Cascade

Track

Double Bang

Starting Track

Figure 6.7: For true double bang events the prediction of each class as the fraction
of all events as a function of the tau decay length is shown. Only tau decay lengths
up to 200m are plotted.

interval. Double bangs are predicted best if many DOMs are hit. The accuracy rises
continuously for an increase in the number of hit DOMs as the confusion decreases
accordingly. In the last bin the confusion increases strongly again, however the
statistic is also very low there. The classifier predicts nearly no double bangs below
100 hit DOMs correctly. Starting tracks have a rising accuracy for few hit DOMs.
Above around 100 hit DOMs it reaches a plateau of around 75% at which it stays.
The confusion is highest at the beginning, decreases further and increases slightly
again for around 1000 hit DOMs due to their confusion with double bangs. The
exact distributions can be found in the corresponding subfigures in Figure 6.6.

We further expect to see a tendency that double bangs are in general more easily
predicted for higher tau decay lengths, as the two cascades are better separated
from each other. For very small tau decay lengths we expect a confusion with
cascades, due to the small separation of the two cascades, which can therefore look
like one. In Figure 6.7 we show the predictions of the classifier of all events with
the true class double bang as a function of the tau decay length. As expected
the confusion with cascades dominates the low regime completely. For tau decay
lengths of about 60m, the fraction of events predicted as cascades and the correct
predictions are in balance. The confusion constantly decreases for larger tau decay
lengths until it becomes negligible starting at a tau length of 150m. Double bangs
show no significant confusion with neither tracks nor starting tracks over the whole
regime.

53

0.0 0.2 0.4 0.6 0.8
Inelasticity

0.0

0.2

0.4

0.6

0.8

1.0
F
ra
ct
io
n
of

E
ve
n
ts

Cascade

Track

Double Bang

Starting Track

Figure 6.8: The fraction of predictions for each class for true starting tracks as a
function of the inelasticity is presented.

Starting tracks are confused with tracks and cascades. For events with the ground
truth starting track 15% of the events are identified as cascades and 10% as tracks.
In the case of starting tracks we expect to see a heavy correlation between the
number of correctly classified events and the inelasticity. The inelasticity of an
event is defined as the ratio between the energy that goes into the hadronic cascade
compared to the total energy of the primary neutrino,

inelasticity =
energy of the hadronic cascade

total energy of primary neutrino
. (6.1)

We expect a higher confusion of starting tracks with cascades for high inelasticities
and a confusion with tracks for very low inelasticities. Analogous to Figure 6.7
we show all events with the ground truth starting track and their corresponding
predictions as a fraction of all predictions against the inelasticity in Figure 6.8.
Again as expected, the confusion with tracks has its maximum at a inelasticity of
zero and decreases with increasing inelasticy. The confusion with cascades behaves
exactly inverse. It reaches its maximum of over 50% of starting track events being
wrongly classified as cascades in the last bin where nearly all energy goes into the
hadronic cascade. The two expected tendencies, a higher confusion of starting
tracks with cascades for high inelasticities and a confusion with tracks for very low
inelasticities, are thus confirmed.

A further quantity that influences the prediction of starting tracks is the track
length inside the detector. A starting track with its vertex at the border of the
detector and an outgoing track is in general harder to identify than its counterpart
with a track going into the instrumented volume. Figure 6.9 shows the classifiers

54

0 200 400 600 800 1000 1200 1400

Track Length inside the Detector[m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
F
ra
ct
io
n
of

E
ve
n
ts

Cascade

Track

Double Bang

Starting Track

Figure 6.9: The fraction of predictions for true starting tracks as a function of the
track length inside the instrumented volume is plotted.

predictions of true starting tracks against the track length inside the instrumented
volume. A clear correlation between the track length and the confusion with
cascades is observed: the shorter the track length the more likely a cascade is
predicted. This effect dominates up to a track length of 150m. The confusion
with tracks shows a slight linearly increasing dependency up to the track length of
around 800m. Afterwards the confusion increases stronger up to more than 70%
at the end of the spectrum.

As we have shown a dependency of starting track prediction on both the track length
inside the detector and the inelasticity, this paragraph will examine the interplay
between starting track predictions and both quantities simultaneously. Figure 6.10
presents the accuracy of predictions for true starting tracks as a function of the
inelasticity and the track length inside the detector. The two beforehand observed
tendencies are confirmed again together with some additional insights: starting
tracks with a long track length are especially confused for very low inelasticities.
The confusion with cascades for high inelasticity goes to far longer track lengths,
what should have a positive effect, than for low ones. Events with an inelasticity
over 0.9 and up to a track length of about 500m are predicted on the same level as
starting tracks with a track length of 200m and an inelasticity below 0.3.

55

Figure 6.10: The accuracy of true starting tracks shown as a function of both the
inelasticity and the track length inside the detector is presented.

6.3.1 Probabilistic Interpretation of the Neural Networks
Output

Due to the use of the softmax activation function in the last layer of the neural
network, compare Section 4.2.1, we can interpret the output of the classifier in
a probabilistic manner. It is important to note that the output is not a real
probability in the sense that an observed event will be of the corresponding class
with this probability. Still it can be seen as a measure how confident the classifier is
about his prediction. To confirm this correlation we first define a quantity we call
the p-score. The p-score is defined as the maximum softmax output of one event.
It is very important to not confuse this definition with the p-value in statistics. To
use our p-score as a measure of certainty we require as minimal condition that the
accuracy should increase if we only base its calculation on events that got predicted
with an increasing p-score threshold. In other words the correlation is confirmed
if for higher minimal p-scores higher accuracies are observed. Figure 6.11 shows
the accuracy for each event type over the p-score threshold. For a certain p-score
threshold of k, the accuracy is calculated based on all events that got predicted
with an p-score higher than k.
It can clearly be seen that the upper requirement is satisfied. Therefore we have
shown that we can use the p-score as a measure of certainty of the neural networks
prediction. Moreover, we can see that predictions for double bang events are
far more insecure than for the other classes, because for the same p-scores lower
accuracies are observed. Following this logic tracks are predicted the safest followed
by starting tracks. All event types converge to a accuracy off nearly 100% for a
p-score threshold of 1, double bangs only converge to around 96%.

56

0.0 0.2 0.4 0.6 0.8 1.0
p-score

60

70

80

90

100

A
cc
u
ra
cy

[%
]

Cascade

Track

DoubleBang

Starting Track

Figure 6.11: The accuracy calculated for all events that got predicted with a p-score
higher than a certain p-score threshold is shown.

6.4 Starting Events Identification

This section focuses on the task to distinguish between incoming and starting
events. Starting events are explained in Section 2.4 and the exact label definition
can be found in Section 5.2. Here a padding of 0m was used, so the volume in
which the vertex of a starting event can be equals exactly the instrumented volume.
Every event that enters the detector from outside is an incoming event. In the
previously explained event type classification task this distinction was already
used for track-like events, resulting in the two classes: tracks and starting tracks.
Cascades can be of both types, but starting is more likely due to their smaller
spatial extension. The same is valid for double bangs as they also consist of two
connected cascades.
The classification results for the starting events identification are shown in the
confusion matrices in Figure 6.12. 97% of the events were identified correctly.
Starting events were found in 97% of the cases with an corresponding precision of
99%. Incoming events were identified with the same rate of 97% but with an worse
resolution of 94%.

For the starting event identification the spatial expansion of the events plays a
major role. Due to the large differences of the event types we show the confusion
matrices again, once for all true track-like events and once for true cascades and
double bangs. Due to their long track lengths, tracks are more likely to be incoming.

57

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.97 0.03

0.03 0.97

(a) ground truth normalized

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.99 0.01

0.06 0.94

(b) prediction normalized

Figure 6.12: The confusion matrices of the starting classification once normalized
on the ground truth of each class and once normalized on the predictions of each
class are presented.

On the contrary, cascades are mostly starting. The confusion matrices obtaining
only events with the ground truth track or starting track are presented in Figure 6.13.

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.90 0.03

0.10 0.97

(a) ground truth normalized

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.94 0.06

0.05 0.95

(b) prediction normalized

Figure 6.13: Confusion matrices of the starting event identification once normalized
on the ground truth of each class and once normalized on the predictions of each
class, only tracks and starting tracks are shown.

Comparing the confusion matrices of all events in Figure 6.12, and the confusion
matrices of only track-like events in Figure 6.13, we can see a slight impairment of
7% for the starting class accuracy and no change for the accuracy of the incoming
class. The corresponding precisions changed similarly: the starting class lost 5% in
precision while the incoming class gained 1% in precision.

58

Figure 6.14 shows the confusion matrices again, now based on events that are
true cascades or true double bangs. Here we see a completely different behavior.
Starting tracks are found in 99% of the cases and their precision reaches full 100%.
On the counter side incoming events are only detected with an accuracy of 45%
while having a really bad precision of 4%. This results of the characteristics of the
shown event that are mostly starting. In absolute values only 225 of the 236,090
events in the test set are incoming and true cascades or true double bangs. This is
also the reason for the impairment of the starting class if only track-like events are
observed. A huge fraction of the starting events are cascades, which are classified
easier than track-like events.

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.99 0.55

0.01 0.45

(a) ground truth normalized

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

1.00 0.00

0.96 0.04

(b) prediction normalized

Figure 6.14: Confusion matrix of the starting event identification once normalized
on the ground truth of each class and once normalized on the predictions of each
class, only cascades and double bangs are shown.

Finally we can state that starting event identification for track-like topologies works
fine. On the other hand it is hard to distinguish cascades and double bangs in
starting and incoming. Firstly, this results from their spatial characteristics and
secondly, from their distribution in our dataset. A way to tackle this problem is
to train a specialized network on a dataset especially created for this task. The
dataset should be adjusted to contain a fair fraction of incoming cascades and
double bangs, so that the network has the chance to learn from them.

6.5 Coincidence Identification

The coincidence identification task aims at finding events that have a second particle
hitting the detector simultaneously. Coincident events are explained in Section 2.4
and the exact label definition can be found in Section 5.2.

59

Due to the rare appearance of coincidences in this dataset, around 15%, the predic-
tion are strongly biased towards single events. As a result the loss will decrease
rapidly to a relatively constant level just by predicting no coincidence independently
of the event. This then results in a nearly constant loss after initial reduction,
compare Figure 6.3c, where it is hard to improve on. The training of this task is
therefore very slow.
In the Figures 6.15a and 6.15b the two normalized confusion matrices of this task
are presented.

Single events are almost always correctly identified, their prediction is correct in
92% of the cases. Coincidences in contrast are only found, in 54% of all cases which
is only slightly better as guessing. If a coincidence is predicted this is however
correct in 99% of the cases. These results partly reflect the unequal distribution
of labels. A possible solution for this problem would be an adapted loss function,
that gives more weight to correct coincidence predictions than for single event
predictions thus reinforcing their training. Another approach is the change of the
label composition in the dataset. The optimal case for this task would be a nearly
50/50 split of single and coincident events. Nevertheless a 50/50 split will also
influence the results of simultaneously learned task. For example, we expect that
it is more difficult to predict the event topology correctly if a coincidence appears
compared to an identical single event.

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 1.00 0.46

0.00 0.54

(a) ground truth normalized

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 0.92 0.08

0.01 0.99

(b) prediction normalized

Figure 6.15: Confusion matrices of the coincidence identification once normalized
on the ground truth of each class and once normalized on the predictions of each
class are depicted.

60

6.6 Exemplary Events and their Predictions

In this section four misclassified example events as well as possible reasons for this
results will be discussed. The events are presented in Figure 6.16.

(a) Event A (b) Event B

(c) Event C (d) Event D

Figure 6.16: Four exemplary event views are shown. Each event is misclassified.

Event A shows a true double bang caused by a tau neutrino with 6.2PeV and a
tau decay length of 28m that is classified as a cascade. The effect that double
bangs with small tau decay lengths get confused with cascades is shown in Figure 6.7.

Event B is a starting track with a track length inside the detector of 115m and a
inelasticity of 0.31. It is falsely classified as a cascade. The reason for this and the
interplay of the two quantities and their effect on the prediction of starting tracks
is illustrated in Figure 6.10.

Event C shows a track of 740m in the instrumented volume which is classified as a
starting track. This case is very rare as only 2% of true tracks are misclassified as
starting tracks. This type of confusion is however still the main part of the total
confusion for true tracks.

Event D shows an event with a coincidence that wasn’t identified. The coincidence
is located in the upper right corner and consists of only four hit DOMs. Simulta-

61

neously the event type was misclassified. While the true event type has been a
double bang it was classified as a cascade, this is an effect of the small tau decay
length as for event A.

More detailed information to each event can be found in the Table 6.1.

Event A Event B Event C Event D

True Event Type Double Bang Starting Track Track Double Bang
Pred. Event Type Cascade Cascade Starting Track Cascade

True Starting Starting Starting Incoming Starting
Pred Starting Starting Starting Starting Starting

True Coincidence Single Event Single Event Single Event Coincidence
Pred Coincidence Single Event Single Event Single Event Single Event

Tau Decay Length 28m 24m
Inelasticity 0.76 0.31 0.21 0.44
Track Length* 115m 740m
hit DOMs 855 649 662 313
Energy neutrino 6.2PeV 2.4PeV 3.1PeV 6.1PeV

Table 6.1: Detailed information about the falsely classified example events are shown.
*= inside the detector

62

7

C
h
a
p
t
e
r

Potential Applications in IceCube

To discuss potential applications of the classifier in IceCube we first need to take a
look at the results under a realistic neutrino flux hypothesis. All results presented
in Chapter 6 are shown on event-to-event basis. In contrast to this we now want
to weight all events according to the IceCube best-fit neutrino flux. To conclude
the chapter we present two potential applications of the classifier in IceCube: first
we outline the use of the classifier in event selections. Second we discuss a possible
way to search for tau neutrinos.

7.1 Weighted Results

We weight all events according to the IceCube best-fit neutrino flux which is
composed of three parts: the atmospheric flux, the prompt flux and the astrophysical
flux. We assume an atmospheric flux based on the model by Honda in 2006 [16].
Furthermore, the prompt neutrino flux suggested by Enberg in 2008 [9] was used.
Finally, the astrophysical flux we exploit is described by the powerlaw

Φν+ν̄(Eν) = c0 × 10−18 GeV−1 cm−2 sr−1 s−1

(

Eν

100TeV

)

−γ

, (7.1)

where we chose c0 and the spectral index γ according to [13],

c0 = 1.01 γ = −2.19. (7.2)

As a result we expect for our data processing a total rate of around 9925.59 events
per year. These consist of 9527.69 events of atmospheric origin, 217.67 events of
prompt origin and 180.23 events of astrophysical origin. These rates split into the
different event topologies as follows: in average we expect 962.26 cascades, 7575.05
tracks, 1386.26 starting tracks and 2.02 double bangs per year.

7.1.1 Event Type Classification

This section compares the event type classification results on event-to-event basis,
presented in Section 6.3, to the ones resulting by weighting the events. The confu-
sion matrices were shown in Figure 6.5. In Figure 7.1 they are shown again, but
now based on the weighted events.

63

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.94 0.01 0.85 0.18

0.04 0.98 0.00 0.14

0.00 0.00 0.14 0.00

0.02 0.01 0.01 0.68

(a) ground truth normalized

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.73 0.07 0.00 0.20

0.01 0.97 0.00 0.03

0.58 0.03 0.25 0.14

0.02 0.07 0.00 0.92

(b) prediction normalized

Figure 7.1: The weighted confusion matrices of the event type classification are
shown. The left confusion matrix is normalized on the ground truth of each class
while the right matrix is normalized on the predictions of each class.

The main changes introduced through the weighting are an accuracy reduction
for starting tracks of 7%, a reduction of the precision for cascades by 13%, an
accuracy reduction of 7% for double bangs and a larger reduction of the precision
of double bangs from 57% to 25%. The precision loss of double bangs is explainable
by their small expected rate or more precisely by the ratio of the event rates per
type. Double bangs are expected much rarer compared to the other topologies, for
example we expect about 3745 times more incoming tracks than double bangs. On
event-to-event basis though the ratio between incoming tracks and double bangs
was about 4.5. Hence by weighting, the fraction of events that get falsely identified
as double bangs increases compared to the number of true ones, as the other event
topologies are expected to be seen at higher rates. The precision of tracks improves
by 4% and the precision for starting tracks by 3%.

In Figure 7.2 the absolute number of expected events of each possible truth and
prediction combination is shown. Due to the high expected rate of incoming tracks
and their good accuracy and precision we see this bin dominating the confusion
matrix: we expect a total of 7422.93 correctly classified tracks each year. Correctly
classified cascades are expected at a rate of 906.43 events per year, while only 52.84
true cascades are confused. Around the same rate of 939.17 correctly classified
starting tracks are expected each year, while a lot more starting tracks are confused,
447.09. With 0.28 events per year, which equals 1 event every 3.57 years, correctly
classified double bangs are expected least frequently. Most of the true double bangs,
1.72 per year, are falsely classified as cascades.

64

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track
P
re
d
ic
te
d
la
b
el

906.43 82.15 1.72 249.34

38.85 7422.93 0.00 197.59

0.67 0.03 0.28 0.16

16.32 69.94 0.02 939.17

Figure 7.2: The weighted confusion matrix of the event type classification showing
the number of absolute expected events per year is depicted.

7.1.2 Starting Event Identification

In this section the performance of the starting event identification for a realistic
flux model is discussed. The corresponding confusion matrices are presented in
Figure 7.3.

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.90 0.02

0.10 0.98

(a) ground truth normalized

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.93 0.07

0.03 0.97

(b) prediction normalized

Figure 7.3: The weighted confusion matrix of the starting classification once
normalized on the ground truth of each class and once normalized on the predictions
of each class is depicted.

Compared to the event-to-event case in Figure 6.12, the accuracy and precision
of starting events decreased while the precision of incoming events increased: the
accuracy of the starting class decreased from 97% to 90% and the corresponding
precision dropped by 6%. For the incoming class the accuracy does increase by
1%, while the precision also increases by 3%. This change results again from the

65

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

2115 155

235 7421

Figure 7.4: The weighted confusion matrix of the starting event identification in
the number of absolute expected events per year is presented.

changing ratio of the classes: on event-to-event basis more cascades are in the
dataset, due to the weighting this changes to relatively more tracks and starting
tracks. The cascades are well predicted as starting events.
The confusion matrix with the absolute values for the starting event identification
is shown in Figure 7.4. A rate of 2115 correctly identified starting events per year
is expected, while 155 events are misclassified as starting. For incoming events
7421 events are classified correctly each year, while confusing 235 starting events
as incoming.

66

7.1.3 Coincident Event Identification

Here the results of the coincidence identification if the IceCube best-fit neutrino
flux is assumed are shown. In Figure 7.5 the corresponding confusion matrices are
depicted.

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 1.00 0.50

0.00 0.50

(a) ground truth normalized

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 0.92 0.08

0.01 0.99

(b) prediction normalized

Figure 7.5: The weighted confusion matrix of the coincidence classification once
normalized on the ground truth of each class and once normalized on the predictions
of each class is shown.

The accuracy of detecting coincidences decreases by 4% to 50%, which corresponds
to pure guessing. However the precision of the prediction stays high at 99%. As a
result 735 coincidences are correctly identified each year, while only 6 events are
falsely classified as a coincidence. The confusion matrix with the absolute values is
depicted in Figure 7.6.

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 8446 739

6 735

Figure 7.6: The weighted confusion matrix of the coincidence identification in the
number of absolute expected events per year is depicted.

67

7.2 Usage for Event Selections

A first potential application of the classifier within IceCube is its usage for event
selections. Based on the classification results events can be selected. If for example
an analysis needs a dataset consisting of track-like events, only events classified as
track or starting track are selected. Most of the time it is thereby very important
to obtain a dataset that is as pure as possible. Hence it is beneficial to only use
events that are predicted more certain. Depending on the later use case a balance
between purity and the number of remaining events has to be found. We have
shown in Section 6.3.1 that the p-score can be interpreted as a certainty of the
classification results and can thus be used as a decision criteria.

In the following the confusion matrix for the event type classification is shown three
times in Figure 7.7: the first line shows the matrix with all events for comparison
reasons. The matrices in the second line are based on events having a minimal
p-score of 0.8. Lastly, the matrices in the third row are based on events having a
p-score greater than 0.90.
The development over an increasing cut-off p-score illustrated in Figure 7.7 shows
a continuous increase in accuracy and precision of each task. The largest confusion
that remains after an increase of the cut-off p-score to 0.9 is the confusion of true
double bangs with cascades. Also a minor confusion of true starting tracks with
cascades and tracks remains as well. They are at a level of about 10% each. Further
confusion matrices with a minimal p-score of 0.75, 0.85 and 0.95 can be found in
the Appendix A.4.

68

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.94 0.01 0.85 0.18

0.04 0.98 0.00 0.14

0.00 0.00 0.14 0.00

0.02 0.01 0.01 0.68

(a) ground truth normalized, p > 0.0

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.73 0.07 0.00 0.20

0.01 0.97 0.00 0.03

0.58 0.03 0.25 0.14

0.02 0.07 0.00 0.92

(b) prediction normalized, p > 0.0

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.98 0.00 0.73 0.15

0.02 0.99 0.00 0.10

0.00 0.00 0.26 0.00

0.01 0.00 0.01 0.74

(c) ground truth normalized, p > 0.80

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.79 0.03 0.00 0.17

0.00 0.98 0.00 0.02

0.31 0.04 0.54 0.11

0.01 0.03 0.00 0.96

(d) prediction normalized, p > 0.80

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.98 0.00 0.49 0.10

0.01 1.00 0.00 0.09

0.00 0.00 0.49 0.00

0.00 0.00 0.01 0.81

(e) ground truth normalized, p > 0.90

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.84 0.02 0.00 0.14

0.00 0.99 0.00 0.01

0.23 0.06 0.62 0.10

0.00 0.02 0.00 0.97

(f) prediction normalized, p > 0.90

Figure 7.7: The development of the two normalized confusion matrices for the
event type classification task if only events with an increasing minimal p-score are
used is illustrated. Therefore the matrices are once shown based on all events, once
only with events of a p-score greater than 0.80 and finally only based on events
with a p-score greater than 0.90. p-score was shortened to p. Events are weighted
to the IceCube best-fit neutrino flux.

69

0.0 0.2 0.4 0.6 0.8 1.0
p-score

0

20

40

60

80

100
R
em

ai
n
in
g
D
at
a
[%

]

Cascade

Track

Double Bang

Starting Track

Figure 7.8: The fraction of data that remains as a function of the p-score cut-off is
shown. Events are weighted to the IceCube best-fit neutrino flux.

The disadvantage of only using events that got predicted with a p-score higher
than a certain threshold is that only a fraction of the data will meet the imposed
requirement. Thereby the number of events in the sample is reduced. Figure 7.8
presents the fraction of data that remains as a function of the p-score threshold.
For a given p-score the remaining fraction of data for tracks is the largest of all
classes. It only starts to drop significantly at a p-score of over 0.95. In general
tracks are therefore classified with the highest certainty, nevertheless this alone
isn’t a measure for how well they get predicted. For the class double bang on
the contrary, the remaining fraction of data drops very early, starting at p-scores
of 0.50. For a p-score of less than 0.70 already more than half of the events get
dropped. The classes of cascades and starting tracks are in between those two
extremes. Details can be found in Figure 7.8.

Coming back to the example made in the beginning of this section, a dataset of only
track-like events is wanted. We now want to look at this selection process in more
detail. In Figure 7.9 the joint precision and remaining data fraction of tracks and
starting tracks as a function of 1− p-score is sketched on a log-scale. The p-score
increases to the left side. The precision is high over the full spectrum. However, for
a track event selection a confusion of some sub-percentages can already be crucial.
On the log scale the remaining data fraction decreases nearly linearly starting at a
minimal p-score of around 0.5.

70

10−2 10−1 100

1− p-score

99

100

P
re
ci
si
on

[%
]

10−2 10−1 100

1− p-score

50

100

R
em

.
D
at
a
[%

]

Figure 7.9: For a track-like event selection the joint precision and remaining data
percentage of tracks and starting tracks as a function of 1− p-score on a log-scale
is sketched. The remaining data fraction is shown on the right, the precision is
shown on the left. The corresponding values for a forced precision of about 99.7%
are highlighted.

Already without applying any cut a remarkable precision of 99.36% is obtained. If
for example a precision of 99.7% should be obtained a minimal p-score of 0.72 needs
to be forced. This cut results in dropping 4.12% of the events with the prediction
track or starting track. Thus 95.88% of the data remains. The respective points
are highlighted in Figure 7.9.

This principles of tuning the accuracy and precision by forcing a p-score over a
certain threshold also applies to the starting events identification and coincidence
identification tasks. As a short overview the evolution of their confusion matrices
as a function of a increasing minimal p-score are shown in the Appendix A.4.

7.3 Double Bang Detection

The identification of events originating from tau neutrino interactions is an im-
portant task in IceCube. As a double bang structure can only be caused by tau
neutrinos, the search for taus can be done by the identification of the double bang
topology. A reliable identification of the latter one through the classifier could thus
assist in the identification of tau neutrinos.

With the current version of our classifier 0.28 double bangs are identified correctly
each year, with a corresponding background of 0.86 events per year, see Figure 7.2.
The background equals the number of falsely identified events per year. About 1.72
events of the total 2.02 double bangs expected each year are classified as different
classes.
The signal to background ratio can be tuned by applying cuts. Hereby a balance
with the remaining signal has to be found.

To see which kind of double bangs we find the accuracy as a function of the number
of minimal hit DOMs and minimal p-scores is shown in Figure 7.10. In more detail,

71

Figure 7.10: The accuracy of true double bangs as a function of the minimal
number of hit DOMs and the minimal p-score is plotted. Events are weighted to
the IceCube best-fit neutrino flux.

the x-axis shows the number of minimal hit DOMs, this means, if the number of
minimal hit DOMs has a certain value k all events with k or more hit DOMs are
considered. The same principle applies to the minimal p-score, all events with a
p-score equal or higher than the minimal p-score are used. As expected the accuracy
rises for higher numbers of hit DOMs as well as for higher p-score thresholds. No
events have a p-score higher than 0.966, hence the top bin is white.

As for the accuracy in Figure 7.10 we sketch the precision as a function of the number
of minimal hit DOMs and minimal p-scores in Figure 7.11. The expected tendency
of better predictions for higher minimal p-score is confirmed again. However the
unexpected trend of larger precisions for increasing numbers of hit DOMs seems
counterintuitive. The highest precisions are achieved for only few hit DOMs and for
a minimal p-score of over 0.90. A part of the explanation could be the underlying
event distribution, more events are expected in the area of few hit DOMs than for
many. Another part could be that possibly the double bangs get to big to be well
identified by the classifier.

Using the precision, two linear decision boundaries can be determined by choosing
a respective point in Figure 7.11. Thereby a specific signal to background ratio
could be obtained. Nevertheless this still results in two straight cuts and they do
not lead to an optimal solution. For a final double bang detection analysis here
a further processing step should start, that determines more advanced decision
boundaries.

72

Figure 7.11: The precision of double bang predictions as a function of the minimal
number of hit DOMs and the minimal p-score is illustrated. Events are weighted
to the IceCube best-fit neutrino flux.

The final interesting question does not concern ratios, but absolute numbers.
Therefore Figure 7.12 shows the absolute number of events correctly and falsely
classified as double bangs per year as a function of the number of minimal hit
DOMs and minimal p-scores.

As expected the loser the cuts are, the higher the rates are. The maximal values, if
no cuts are applied, of 0.28 correctly identified events per year and the background
of 0.86 events per year can be found in the bottom left corner of the upper subfigure
in Figure 7.12 and respectively in the subfigure at the bottom. Further, we see a
higher decrease in the number of events per year in the regime for few hit DOM
for falsely classified double bangs than for correctly classified ones if we increase
the minimal required p-score. Taking the ratio of the events in the two absolute
plots gives the precision, shown in Figure 7.11. The two plots can be used to easily
see witch signal rate corresponds to with background rate.

Additionally three histograms can be found in the Appendix A.5 showing the num-
ber of true double bangs, the number of predicted double bangs and the number
of correctly identified double bangs per year binned in number of hit DOMs and
p-score.

73

Figure 7.12: Number of double bang predictions per year as a function of the
minimal number of hit DOMs and the minimal p-score. On the top the number of
correctly identified events per year is shown. In contrast the bottom graph shows
the number of double bang predictions per year that are false. The different orders
of magnitude for the two graphs should be taken into account. Events are weighted
to the IceCube best-fit neutrino flux.

74

8

C
h
a
p
t
e
r

Conclusion and Outlook

8.1 Conclusion

This thesis evaluated the use of deep neural networks for event type classifications
in IceCube. The training and evaluation of the neural networks were based on
Monte Carlo simulations by the IceCube collaboration.

Firstly, we have shown that special care needs to be taken to generate a consistent
dataset. Label definitions should be as clear as possible to enable the network
to learn the different event topology characteristics. Further the ratio between
the different classes should be carefully chosen to achieve a balanced dataset. We
have shown that equally distributed labels prevent biases towards specific classes.
Additionally we suggested to adjust the distributions of each individual class further
to avoid biases here. An similar distribution in number of hit DOMs among all
classes seems promising.

As the available four dimensional input for one single event would have been
too large and too complex to train on, we proposed a reduced input size. It is
stacked of three dimensional features, containing charge quantiles and the total
measured charge per DOM. Furthermore, we used a compressed grid representation
by rearranging the strings.

The architecture of the presented neural network is based on the findings of a
broad exploration of parameters including the general structure of the architecture,
the network’s respective size, different loss functions, optimizers and the extend of
using different regularization methods. The final classifier presented in this thesis
is based on Google’s InceptionResNet. It uses the Adam optimizer and dropout
as well as batch normalization for the regularization of the training. Furthermore,
it utilizes multi-task learning to enable better generalization and to have a more
generic application. Each intermediate version of the classifier had been carefully
evaluated by checking its results against our physical expectations.

The resulting classifier was able to distinguish the four topologies, cascades, tracks,
double bangs and starting tracks, fairly well. 87.9% of its predictions are correct.
The confusion of double bangs with cascades remains the largest open issue. Start-
ing events can be distinguished from incoming ones in more than 90% of the cases.
The coincidence identification detected around half of all occurring coincidences,
while if a coincidence is predicted the classifier is mostly correct. This needs further
investigation.

75

Finally we outlined two potential applications for the classifier in IceCube: event
selections and searches for tau neutrinos. However, further investigations have to
be done to validate the consistency of the neural network. A fine-tuning of the
classifier to the respective task is expected to further improve its performance.

In general we see the achieved results of event classification through our proposed
architecture as a proof of principle. We have shown that it is possible to classify
event topologies in IceCube on a competitive level through the usage of deep neural
networks.

The framework for developing deep learning applications in IceCube partly created
within this thesis is publicly available at the following git repository: https:

//github.com/MaxiKro/DeepIceLearning.

8.2 Outlook

Many open questions and starting points for improvement remain: on the one side
the classifier itself can further be optimized while a more profound understanding
of the internals of the classifier could be gained. On the other side its usage should
be evaluated in more detail for the various applications in IceCube.

One of the biggest constraints of the neural network was our decision to use a special
architecture based on three dimensional convolutional neural networks. There are
other architectures which may have beneficial aspects for our classification task.
For sure it is worth investigating them further. A first potential step could be the
use of four dimensional convolutions, as the raw IceCube data is four dimensional
as well. This architecture would match the data more natural as well as make the
calculation of specific input features obsolete. An alternative approach would be
the use of recurrent neural networks. These are able to deal more naturally with
the time component of the waveform. Graph neural networks on the other hand
could offer the possibility to deal with the irregular geometry of the detector.
Lets assume we stick with the general architecture of our neural network. Addi-
tional potential lays in the further optimization of the hyperparameters through a
structured hyperparameter scan.
Based on the discussion on the significant influence of the dataset composition in
section 5.6, we argue that the biggest potential for improvement for the current
architecture is hidden in the dataset. We therefore suggest to train the classifier
again on a further optimized dataset. An equal distribution for the number of hit
DOMs among the classes seems promising here.
DeepCore increases the resolution of the detector by extending the energy range
in which IceCube can measure effectively. However the information measured by
DeepCore’s DOMs has not yet been included in our classifier. The challenge is
an effective implementation in the current input shape of the neural network. We
expect an improved performance through its inclusion.
The classifier has so far only been trained on a specific set of simulations that all

76

https://github.com/MaxiKro/DeepIceLearning
https://github.com/MaxiKro/DeepIceLearning

have the same ice properties. We have not yet tested the network on systematic
datasets, which should be done to evaluate how robust the classifier is and in which
way its performance is affected.
A big step in any machine learning application that was trained on simulated data
is its application on experimental data. As often slight disagreements between
simulated and experimental exist, the applications can show different performances.
This test is an important step, which still needs to be done. Especially it has to be
checked, weather the neural network has trained on specific features inherent to
the Monte Carlo simulation.
Some additional ideas that we want to mention but don’t want to outline further
are the inclusion of dropped DOMs in IceCube, the use of hexagonal kernels, an
event dependent loss function and the visualization of the neural network feature
maps. Additionally more tasks, like a direction reconstruction, can be added.

Some of the possible applications in IceCube of such an classifier were already
shortly outlined in Chapter 7. We further see the possibility to increase the active
volume for starting events to the vicinity of the instrumented volume. This would
allow for a detailed study on the performance of the starting events identification
with different volume sizes. If this works fine, this would allow to increase the
starting event datasets.
Neural networks are extremely fast applied, in an order of milliseconds, once they
are trained. Additionally they don’t need many computational resources. Therefore
the classifier could be used at the South Pole by allowing fast event topology
predictions online. The classifier could furthermore be used to perform a flavor
ratio analysis based on the predictions of the neural network.
Independent of which application will be targeted, the classifier should further be
fine-tuned to this specific task. We thereby expect a further increase in performance
such that the classifier becomes competitive as an alternative approach to the
present methods applied in IceCube.

77

78

Acknowledgements

This thesis would not have been possible on this level without the support of many
people. That’s why I want to sincerely thank all of them.
First of all, I want to thank my supervising professor, Elisa Resconi, who made it
possible for me to write this thesis on such an interesting topic in the first place.
She gave me the opportunity to be a part of her amazing working group at the
Technical University Munich and IceCube over the last year. Additionally I want
to thank her for sending me to several conferences where I had the chance to meet
different scientists from all over the world.
I would like to thank Susanne Mertens for agreeing to be the second reviewer of
my thesis.
A big thanks to my direct supervisor, Theo Glauch, which supported me during my
whole thesis. He somehow survived all my questions and always had great advise
and stunning ideas, that changed my work to the better.
A special thanks goes to all my colleges with whom I shared many discussions
about many different topics while having great coffee and surprisingly often cake.
It was a pleasure to share the last year with you all.
In particular I want to thank Elisa, Theo and Matthias for proofreading this thesis
and giving valuable feedback.
Finally I want to thank my parents, without whom my whole studies would not
have been possible and I would have never even reached the point to write such an
thesis. Thanks for all the support and love.
A special thanks goes to Friedrich, without him my physics studies would have
already ended in its first year. Thanks for the last five years of friendship.
A last and special thanks to my girlfriend Antonia, who supported me heavily over
the last year, encouraged me over and over again and who was always able to cheer
me up.

79

80

A

A
p
p
e
n
d
i
x

Appendix A

A.1 Monte Carlo Simulation

The directories of the used simulations on the cluster of the IceCube collaboration
in Madison are listed below:

• /data/ana/Cscd/StartingEvents/NuGen new/NuE/
medium energy/IC86 flasher p1=0.3 p2=0.0/l2

• /data/ana/Cscd/StartingEvents/NuGen new/NuMu/
medium energy/IC86 flasher p1=0.3 p2=0.0/l2

• /data/ana/Cscd/StartingEvents/NuGen new/NuTau/
medium energy/IC86 flasher p1=0.3 p2=0.0/l2

A.2 Additional Distributions of Physics

Parameters

81

0 2 4 6 8
log10(Energy) [GeV]

100

101

102

103

104

N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

0 2 4 6 8
log10(Energy) [GeV]

100

101

102

103

104

105

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure A.1: Distributions of the whole dataset against the distributed energy once
split for all event types and once for the event types which should be classified are
shown.

82

0.0 0.2 0.4 0.6 0.8 1.0
Inealsticity

100

101

102

103

104

105

106

N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

0.0 0.2 0.4 0.6 0.8 1.0
Inealsticity

101

102

103

104

105

106

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure A.2: Distributions of the whole dataset against the inelasticity once split for
all event types and once for the event types which should be classified are depicted.

83

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos(zenith)

10−1

101

103

105
N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos(zenith)

102

103

104

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure A.3: Distributions of the whole dataset against the cousin of the zenith once
split for all event types and once for the event types which should be classified are
presented.

84

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos(azimuth)

101

102

103

104

105

106

N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

cos(azimuth)

103

104

105

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure A.4: Distributions of the whole dataset against the cousin of the azimuth
once split for all event types and once for the event types which should be classified
are plotted.

85

3 4 5 6 7 8 9
log10(Energy of the First Particle) [GeV]

101

102

103

104

N
u
m
b
er

of
E
ve
n
ts

Neutral Current

Cascade

Through-going Track

Starting Track

Stopping Track

Double Bang

Glashow Track

Glashow Tau

(a) All Event Types

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log10(Energy of the First Particle) [GeV]

100

101

102

103

104

105

N
u
m
b
er

of
E
ve
n
ts

Cascade

Through-going Track

Double Bang

Starting Track

(b) Event Types after relabeling

Figure A.5: Distributions of the whole dataset against the energy of the first
particle once split for all event types and once for the event types which should be
classified are shown.

86

A.3 Details to the Classifiers Setup

A.3.1 Stem

Position Layer Type Number of Filters Filter Size Stride

1 3D Conv. with bn* 32 (2,2,3) 1
2 3D Conv. with bn* 32 (2,2,3) 1
3 3D Conv. with bn* 64 (2,2,3) 1
4 MaxPooling (1,1,2) 1
5 3D Conv. with bn* 80 (2,2,3) 1
6 3D Conv. with bn* 96 (2,2,3) 1
7 MaxPooling (2,2,3) (1,1,2)

Table A.1: Details of the different layers of the stem are presented.
*= three dimensional convolution with a batch normalization layer

For all convolutions we used a same padding and a ReLu activation function.

A.3.2 Training Parameter

The hyperparameters we used in the training process were chosen as follow:

Parameter Choice

Patience 20
Verbose 1
Delta 0
Max Queue Size 3
Learning Rate 0.001
Optimizer Adam
Single Gpu Batch Size 16

Table A.2: Choices for the parameters used in the training process are listed.

87

A.4 Confusion Matrix p-cut

A.4.1 Event Type Classification

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.97 0.01 0.79 0.17

0.02 0.99 0.00 0.11

0.00 0.00 0.20 0.00

0.01 0.00 0.01 0.73

(a) ground truth normalized, p > 0.75

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.78 0.04 0.00 0.18

0.00 0.98 0.00 0.02

0.36 0.04 0.49 0.11

0.01 0.04 0.00 0.96

(b) prediction normalized, p > 0.75

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.98 0.00 0.64 0.14

0.02 0.99 0.00 0.10

0.00 0.00 0.35 0.00

0.00 0.00 0.01 0.77

(c) ground truth normalized, p > 0.85

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.81 0.03 0.00 0.16

0.00 0.98 0.00 0.01

0.27 0.05 0.57 0.11

0.00 0.03 0.00 0.97

(d) prediction normalized, p > 0.85

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.98 0.00 0.23 0.04

0.01 1.00 0.00 0.07

0.00 0.00 0.76 0.00

0.00 0.00 0.01 0.88

(e) ground truth normalized, p > 0.95

C
as
ca
d
e

T
ra
ck

D
ou

b
le

B
an

g

S
ta
rt
in
g
T
ra
ck

True label

Cascade

Track

Double Bang

Starting Track

P
re
d
ic
te
d
la
b
el

0.90 0.01 0.00 0.09

0.00 0.99 0.00 0.01

0.12 0.08 0.72 0.08

0.00 0.01 0.00 0.98

(f) prediction normalized, p > 0.95

Figure A.6: The development of the two normalized confusion matrices on an
event-to-event basis for the event type classification task if only events with an
increasing minimal p-score are used is illustrated. Therefore the matrices with an
minimal p-score of 0.75, 0.85 and 0.95 are shown. The values are based on the
weighted events.

88

A.4.2 Starting Events Identification

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.93 0.01

0.07 0.99

(a) ground truth normalized, p > 0.75

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.96 0.04

0.02 0.98

(b) prediction normalized, p > 0.75

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.95 0.01

0.05 0.99

(c) ground truth normalized, p > 0.85

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.97 0.03

0.02 0.98

(d) prediction normalized, p > 0.85

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.97 0.00

0.03 1.00

(e) ground truth normalized, p > 0.95

S
ta
rt
in
g

In
co
m
in
g

True label

Starting

IncomingP
re
d
ic
te
d
la
b
el

0.98 0.02

0.01 0.99

(f) prediction normalized, p > 0.95

Figure A.7: The development of the two weighted normalized confusion matrices
for the starting events identification task if only events with an increasing minimal
p-score are used is illustrated. Therefore the matrices with an minimal p-score of
0.75, 0.85 and 0.95 are shown. The values are based on the weighted events.

89

A.4.3 Coincidence Identification

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 1.00 0.50

0.00 0.50

(a) ground truth normalized, p > 0.75

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 0.92 0.08

0.00 1.00

(b) prediction normalized, p > 0.75

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 1.00 0.50

0.00 0.50

(c) ground truth normalized, p > 0.85

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 0.93 0.07

0.00 1.00

(d) prediction normalized, p > 0.85

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 1.00 0.06

0.00 0.94

(e) ground truth normalized, p > 0.95

S
in
gl
e
E
ve
n
t

C
oi
n
ci
d
en
t
E
ve
n
t

True label

Single Event

Coincident EventP
re
d
ic
te
d
la
b
el 0.95 0.05

0.00 1.00

(f) prediction normalized, p > 0.95

Figure A.8: The development of the two normalized confusion matrices based
on weighted events for the coincidence identification task if only events with an
increasing minimal p-score are used is illustrated. Therefore the matrices with an
minimal p-score of 0.75, 0.85 and 0.95 are shown. The values are based on the
weighted events.

90

A.5 Tau Analysis

Figure A.9: All true double bangs depended on their number of hit DOMs and
there p-score are shown in form of a histogram. Events are weighted to the IceCube
best-fit neutrino flux.

91

Figure A.10: All predictions of double bangs depended on their number of hit
DOMs and there p-score are shown in form of a histogram. Events are weighted to
the IceCube best-fit neutrino flux.

Figure A.11: All correct predictions of double bangs depended on their number of
hit DOMs and there p-score are shown in form of a histogram. Events are weighted
to the IceCube best-fit neutrino flux.

92

Bibliography

[1] M. G. Aartsen et al. Evidence for High-Energy Extraterrestrial Neutrinos at
the IceCube Detector. Science, 342:1242856, 2013.

[2] M. G. Aartsen et al. Measurement of South Pole ice transparency with the
IceCube LED calibration system. Nucl. Instrum. Meth., A711:73–89, 2013.

[3] M. G. Aartsen et al. Search for Astrophysical Tau Neutrinos in Three Years
of IceCube Data. Phys. Rev., D93(2):022001, 2016.

[4] M. G. Aartsen et al. The IceCube Neutrino Observatory: Instrumentation
and Online Systems. JINST, 12(03):P03012, 2017.

[5] M. G. Aartsen et al. Neutrino emission from the direction of the blazar TXS
0506+056 prior to the IceCube-170922A alert. Science, 361(6398):147–151,
2018.

[6] Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR,
abs/1803.08375, 2018.

[7] J. Beringer et al. Review of particle physics. Physical Review D - Particles,

Fields, Gravitation and Cosmology, 86(1), 7 2012.

[8] Richard Caruana. Multitask learning: A knowledge-based source of induc-
tive bias. In Proceedings of the Tenth International Conference on Machine

Learning, pages 41–48. Morgan Kaufmann, 1993.

[9] Rikard Enberg, Mary Hall Reno, and Ina Sarcevic. Prompt neutrino fluxes
from atmospheric charm. Phys. Rev. D, 78:043005, Aug 2008.

[10] J. A. Formaggio and G. P. Zeller. From eV to EeV: Neutrino Cross Sections
Across Energy Scales. Rev. Mod. Phys., 84:1307–1341, 2012.

[11] Raj Gandhi, Chris Quigg, Mary Hall Reno, and Ina Sarcevic. Ultrahigh-energy
neutrino interactions. Astropart. Phys., 5:81–110, 1996.

[12] Sheldon L. Glashow. Resonant scattering of antineutrinos. Phys. Rev., 118:316–
317, Apr 1960.

[13] Christian Haack and Christopher Wiebusch. A measurement of the diffuse
astrophysical muon neutrino flux using eight years of IceCube data. PoS,
ICRC2017:1005, 2018.

[14] Francis Halzen and Spencer R. Klein. IceCube: An Instrument for Neutrino
Astronomy. Rev. Sci. Instrum., 81:081101, 2010.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[16] Morihiro Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki.
Calculation of atmospheric neutrino flux using the interaction model calibrated
with atmospheric muon data. Phys. Rev., D75:043006, 2007.

93

[17] Mirco Huennefeld. Deep Learning in Physics exemplified by the Reconstruction
of Muon-Neutrino Events in IceCube. PoS, ICRC2017:1057, 2018.

[18] P. A. Čerenkov. Visible radiation produced by electrons moving in a medium
with velocities exceeding that of light. Phys. Rev., 52:378–379, Aug 1937.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

[20] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for
deep neural networks in classification. CoRR, abs/1702.05659, 2017.

[21] Johannes Kager. Investigation on Applying Deep Learning Methods for Event
Reconstruction in IceCube. 2017.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[23] Kai Krings. Search for Galactic and Extra-Galactic Neutrino Emission with
IceCube. 2018.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
Nov 1998.

[26] Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
44, 05 2015.

[27] Kevin P. Murphy. Machine learning : a probabilistic perspective. MIT Press,
Cambridge, Mass. [u.a.], 2013.

[28] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage
and Organization in The Brain. PSYCHOLOGICAL REVIEW, pages 65—-386,
1958.

[29] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[30] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling op-
erations in convolutional architectures for object recognition. In Konstantinos
Diamantaras, Wlodek Duch, and Lazaros S. Iliadis, editors, Artificial Neural
Networks – ICANN 2010, pages 92–101, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

94

[31] Jürgen Schmidhuber. Deep learning in neural networks: An overview. CoRR,
abs/1404.7828, 2014.

[32] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature, 529(7587):484–489,
January 2016.

[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[34] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on learning. CoRR,
abs/1602.07261, 2016.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision.
CoRR, abs/1512.00567, 2015.

95

96

List of Figures

2.1 IceCube grid top view . 5
2.2 Overview of the IceCube experiment 6
2.3 Digital optical module . 7
2.4 Principle of a Cherenkov Cone . 8
2.5 Digitization methods of a waveform 8
2.6 Pulses of a waveform . 9
2.7 Event view of a starting track in IceCube 9
2.8 Event views of the main event topologies in IceCube 10
2.9 Event views of further event topologies in IceCube 11

3.1 Cross sections relevant for IceCube 14

4.1 Rosenblatt perceptron . 17
4.2 Four common activation functions 18
4.3 Fully connected neural network . 19
4.4 Principle of a convolution . 20
4.5 Principle of a MaxPooling layer . 21
4.6 Residual unit . 23
4.7 Naive inception unit . 25
4.8 Three different Inception-ResNet modules 25
4.9 General idea of multi-task learning 26
4.10 Exemplary confusion matrix . 27
4.11 Confusion matrix normalization . 28

5.1 Charge quantiles . 30
5.2 Sketch IceCube grid top view . 31
5.3 Sketch of the rearranged grids top view 32
5.4 Comparison of one event with different grids 33
5.5 Decision tree for event classes . 35
5.6 Distribution of event classes . 38
5.7 Distribution of event labels . 38
5.8 Distributions of starting and coincidence labels 39
5.9 Distribution of classes against number of hit DOMs 40
5.10 Distribution of classes against track length inside the detector . . . 41
5.11 Distribution of classes against tau decay length 41

6.1 Architecture of the classifier . 47
6.2 Loss . 48
6.3 Losses for each task individually . 49
6.4 Performance score . 50
6.5 Confusion matrices event type classification 51
6.6 Accuracy, confusion and statistic of each label against number of hit

DOMs . 52
6.7 Predictions against tau decay length of true double bangs 53
6.8 Predictions against inelasticity of true starting tracks 54
6.9 Predictions against track length inside the detector of true starting

tracks . 55

97

6.10 Accuracy of true starting tracks against inelasticity and track length 56
6.11 Accuracy against p-score cut . 57
6.12 Confusion matrices starting classification 58
6.13 Confusion matrices starting classification of tracks only 58
6.14 Confusion matrices starting classification of cascades and double

bangs only . 59
6.15 Confusion matrices coincidence classification 60
6.16 Example event views . 61

7.1 Weighted confusion matrices event type classification 64
7.2 Weighted absolute confusion matrices event type classification . . . 65
7.3 Weighted confusion matrices starting classification 65
7.4 Weighted absolute confusion matrix starting event identification task 66
7.5 Weighted confusion matrices coincidence classification 67
7.6 Weighted absolute confusion matrix coincidence identification tasks 67
7.7 Development confusion matrices p-score 69
7.8 Remaining data after p-score cut of event type classification 70
7.9 Remaining data and precision of track-like events 71
7.10 Accuracy double bang predictions 72
7.11 Precision double bang predictions 73
7.12 Events per year double bang predictions 74

A.1 Distribution of classes against distributed energy 82
A.2 Distribution of classes against inelasticity 83
A.3 Distribution of classes against cos(zenith) 84
A.4 Distribution of classes against cos(azimuth) 85
A.5 Distribution of classes against energy of primary neutrino 86
A.6 Development confusion matrices p-score 0.75, 0.85, 0.95 88
A.7 Development confusion matrices p-score 0.75, 0.85, 0.95, starting

identification . 89
A.8 Development confusion matrices p-score 0.75, 0.85, 0.95, coincidence

identification . 90
A.9 Weighted two dimensional histogram showing true double bangs . . 91
A.10 Weighted two dimensional histogram showing all predicted double

bangs . 92
A.11 Weighted two dimensional histogram showing correct predicted dou-

ble bangs . 92

98

List of Tables

5.1 Allocation of labels . 34
5.2 Simulation parameters . 36
5.3 Kept percentages of event types . 37
5.4 Dataset split . 37

6.1 Detailed information about the falsely classified example events . . 62

A.1 Details stem . 87
A.2 Detail training parameters . 87

99

100

List of Abbreviations

ATWD analog transient waveform digitizer

CC charged current (interaction)

DOM digital optical module

fADC fast analog digital converter

MTL multi task learning

NC neutral current (interaction)

PMT photon multiplier tube

ReLu rectified linear unit

RNN recurrent neural network

101

102

Declaration

I, Maximilian Kronmueller, herewith declare that I have composed the present the-
sis myself and without use of any other than the cited sources and aids. Sentences
or parts of sentences quoted literally are marked as such; other references with
regard to the statement and scope are indicated by full details of the publications
concerned. The thesis in the same or similar form has not been submitted to any
examination body and has not been published. This thesis was not yet, even in
part, used in another examination or as a course performance. Furthermore I
declare that the submitted written (bound) copies of the present thesis and the
version submitted on a data carrier are consistent with each other in contents.

Munich, 13.12.2018 ————————————————

103

	Introduction
	The IceCube Neutrino Observatory
	Detector Setup
	Digital Optical Modules

	Measurement Principle
	Waveform and Pulses
	Event Topologies in IceCube

	Particle Physics
	Neutrino Interactions
	Tau Decay

	Theory of Neural Networks
	Neural Networks in the Field of Machine Learning
	The Basics of Neural Networks
	Building a Neural Network
	Training of a Neural Network

	Residual and Inception Units
	Residual Units
	Inception Units

	Multi-Task Learning
	Confusion Matrix

	Specification of the Dataset
	Specifics of IceCube Data for Neural Networks
	Input Features
	Grid

	Label Definitions
	Event Topologies
	Further Classes

	Properties of the Monte Carlo Simulation
	Event Selection
	General Properties of the Dataset
	Training, Validation and Test Set
	Event Distributions in the Dataset
	Distribution of Physics Parameters

	Impact of the Dataset Composition

	The Classifier
	Specification of the Classifier
	Input
	Architecture

	The Training Process
	Choice of the Final Neural Network

	Event Type Classification
	Probabilistic Interpretation of the Neural Networks Output

	Starting Events Identification
	Coincidence Identification
	Exemplary Events and their Predictions

	Potential Applications in IceCube
	Weighted Results
	Event Type Classification
	Starting Event Identification
	Coincident Event Identification

	Usage for Event Selections
	Double Bang Detection

	Conclusion and Outlook
	Conclusion
	Outlook

	Acknowledgements
	Appendix A
	Monte Carlo Simulation
	Additional Distributions of Physics Parameters
	Details to the Classifiers Setup
	Stem
	Training Parameter

	Confusion Matrix p-cut
	Event Type Classification
	Starting Events Identification
	Coincidence Identification

	Tau Analysis

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Declaration

