
Technische Universität München
Department Physik

IceCube: neutrinos on graphics cards

IceCube: Neutrinos auf Graphikkarten

Themensteller:

Prof. Dr. Elisa Resconi

Zweitkorrektor:

Prof. Dr. Peter Fierlinger
Department Physik
Technische Universität München
Arcisstraße 11, 80333 München

Bearbeitet von:

Kevin Abraham
Matrikelnummer: 03627986 , Fachsemester: 6

Abgabetermin: 28 August 2014

2

Contents

1. Introduction 3

1.1. IceCube . 3
1.2. Graphics Cards for General Purpose Computing . 3

2. Small-Scale Anisotropies 5

2.1. The Analysis . 5
2.2. Moving the Analysis to the GPU . 7
2.3. Further Improvements to the Algorithm . 8

2.3.1. Sorting the Events by Zenith . 8
2.3.2. Improved Binning . 8
2.3.3. Pre-Computing . 8

2.4. Conclusion . 9

3. Millipede 10

3.1. How the Reconstruction works . 10
3.2. B-Splines . 12
3.3. Challenges . 13
3.4. Redundant Memory . 14
3.5. Outlook . 16

4. Conclusion 17

A Appendix 19

List of Figures

Fig. 1 The IceCube detector, IceCube collaboration . 3

Fig. 2 schematic of the 2-pt method, own work . 6
Fig. 3 test statistic distribution with isotropic background and sources, Bernhard Anna, IceCube

collaboration . 6
Fig. 4 random background 5000 trials, Bernhard Anna, IceCube collaboration 7

Fig. 5 Icecube event from Run 118175, event ID: 4612 . 11
Fig. 6 B-Splines, own work . 12

3

1. Introduction

1.1. IceCube

IceCube is a neutrino detector located at the geographic South Pole (Aguilar 2013) (The IceCube
Collaboration 2008). IceCube instruments 1 km3 of ice in a depth from 1450 to 2450 meters with 5160
digital optical modules (DOMs), deployed on 86 strings. Among other particles, IceCube detects atmospheric
muons, neutrinos and their antiparticles. These are produced in the decay of pions, which are produced
by collisions of cosmic rays with gas nuclei in the upper atmosphere. As atmospheric muons cannot pass
through the earth, these are only registered from the southern hemisphere. Additionally, IceCube registers
when neutrinos interact with nuclei in the ice, producing either - in the case of electron neutrinos - an electron
shower, or, for muon neutrinos, a muon, which is registered as a long track, often passing through the entire
detector.
The original IceCube can detect muons with an energy above 100 GeV, the DeepCore extension, with six
additional strings, was built to lower the threshold to 10 GeV events (Geisler 2010, p38). Figure 1 shows a
schematic view of IceCube, DeepCore and IceTop.
Additionally, on the surface there is a 1 km2 large air shower detector, IceTop, consisting of a pair of tanks
placed about 25 meters from each hole cable with two IceCube DOMs each (The IceCube Collaboration 2008).
The IceCube DOMs use photo-multiplier tubes to detect photons from Cerenkov radiation. Cerenkov radiation
is emitted when a charged particle travels through a medium at a speed faster than the speed of light in that
medium. Charged particles polarize the atoms in the medium. If the particle were traveling slower than the
speed of light in the medium, radiation from these atoms returning to their equilibrium state would interfere
destructively. However, if the particle is traveling faster than the speed of light in the medium, the atoms can
no longer interfere. The radiation is emitted at an angle specific to the speed of the particle and the medium,
in the case of ice and a particle traveling at speeds near the speed of light, this is about 41◦ (Geisler 2010,
p. 33). The DOMs record timing and number of photons. A series of reconstructions is then applied to get
the most likely track and energy. Reconstructions range from fast but inaccurate reconstructions like linefit,
and more precise but more time-consuming reconstructions like millipede (Whitehorn 2012). See chapter 3
for more details on reconstruction.

1.2. Graphics Cards for General Purpose Computing

Graphics cards are highly specialized devices, originally built to accelerate the computation of 3D computer
graphics, mainly for PC games. Due to the very parallel nature of graphical calculations, graphics processing
units, called GPUs, were built to handle a large amount of threads. Unlike CPUs, which are built to execute a

Fig. 1: The IceCube detector with 86 strings and 5160 DOMs in a depth from 1450m to 2450m

4

small number of threads at a high speed, graphics cards gain their speed by parallelism. The nvidia GK110
GPU can handle 2880 threads in parallel (nvidia 2012). To be able to accommodate this amount of threads,
a GPU uses a reduced reduced the amount of control logic per thread. On the nvidia Kepler architecture,
threads are grouped into groups of 32, warps, named after the group of strings "threads" used in weaving.
All threads in one warp share the same control logic, therefore all threads must execute the same series
of commands on different data sets. This is called a SIMD architecture: same instruction, multiple data.
This allows the GPU to cut down on control logic and the associated power consumption, at the cost of
general-purpose applicability. Therefore, GPUs should not be used in cases where code is highly divergent,
meaning that the threads quickly split into non-predictable branches.
Originally, programming graphics cards was very difficult, requiring knowledge of the use of the graphics
drivers. As graphics cards became more general-purpose devices, vendors began to market their graphics
cards specifically for high performance computing. In 2006, nvidia released the compute unified device ar-
chitecture (CUDA), allowing direct programming of the GPU and giving methods for communication between
CPUs and GPUs (Jason Sanders 2012). Another option for programming GPUs is openCL, an open standard
that supports devices from a large variety of vendors, unlike CUDA, which only works on nvidia graphics cards.

In my thesis, I analyze the use of GPUs for physical computations in the IceCube collaboration the
case of two different programs, described in the following chapters.

5

2. Small-Scale Anisotropies

2.1. The Analysis

The Small-Scale Anisotropies analysis searches for faint sources in the IceCube data that are too weak to
be detected in a point source search. The standard point source search needs a strong flux to be sensitive,
while the diffuse analysis needs a large amount of sources. The Small-Scale Anisotropy search is in between
these two and does not need any prior information about the potential sources (M.G. Aartsen et al. 2014). The
analysis cannot identify individual sources, it can only prove or disprove the existence of sources in general.
Due to detector uncertainties, two neutrinos originating from the same point in space may be reconstructed
at slightly different angles. To overcome this, the analysis evaluates the Two-Point Autocorrelation Test,
called 2-pt, at angles comparable to the detector resolution. It works by calculating the angle Ψ between
each pair of events, and counting how many pairs are separated by an angle smaller than a specified angle
θ. This is done for a range of angles θ, called angle bins, each with individual counters. The result is then
compared with what would be expected from an isotropic distribution. In addition, to reduce background
and increase sensitivity to high-energy sources, a minimum energy Emin is introduced, only counting pairs
where both events have a reconstructed energy larger than Emin.

With Ψ being the spatial distance between two events, the so-called test statistic (TS) for an angle θ and a
minimum energy Emin, is defined as:

TS(θ, Emin) =
obs.no.of pairs withΨ ≤ θ,Ei,j ≥ Emin

avg.no.of bg.pairs withΨ ≤ θ,Ei,j ≥ Emin
(2.1)

The observed number of pairs is calculated by the equation

N(θmax) =

N∑
i=0

N∑
j=i+1

Θ(θi,j − θmax) (2.2)

Assuming a E−2 neutrino spectrum, and more than 20 sources in the northern sky, the 2-pt analysis
could detect a signal that the point source likelihood search would not (M.G. Aartsen et al. 2014, p.19).

To know how likely the resultant test statistic would have happened by chance, the distribution of
the test statistic without any sources must be known. This is calculated by repeatedly replacing the azimuth
component of the sources by random numbers, called scrambling, and evaluating equation 2.2 again. Then,
a distribution like in fig. 3 is obtained. Only the azimuth component of the events is scrambled, as there is
a zenith dependency in IceCube data: while atmospheric neutrinos will reach IceCube almost unobstructed
from any point, atmospheric muons can not travel trough the earth, so only the muons from the southern
hemisphere will reach the detector. For this reason, a different event selection mechanism is used for the
southern hemisphere, and the analysis is carried out separately for the southern and northern hemispheres.

Currently, the analysis groups pairs into 20 angular bins, from an angle of 0.25◦ to 5◦ in 0.25◦ steps. Figure 2
shows a schematic of the pair counting algorithm, illustrated by four different colors representing four angles.
In addition, there are four energy bins, the analysis is carried out separately for all the events, the top 10 %,
the top 1% and the top 0.1 % of the events sorted by energy. All together, there are 80 bins, each containing
the respective number of pairs.

To claim a discovery, the test statistic should be outside of the 5σ range of the background distribu-

6

Fig. 2: A schematic representing the pair-counting algorithm on a segment of the sky. The dotted lines
represent counted pairs. Here, four bins are represented by - from largest to smallest - the colors green, blue
red and orange. Should there be sources, this would result in increased pair count.

Fig. 3: normalized test statistic distribution assuming isotropic background (black) background plus 750
events from 50 sources (blue), and 1500 events from 100 sources (red)

7

Fig. 4: distribution in the 0.25◦ angle bin and 10% energy bin for random background after 5000 trials, fitted
with a gamma function

tion. The likelihood for this to happen by chance is 2.78 · 10−7. So, to obtain information about this range, it is
necessary to repeat this process, called a trial, around 107 times.
However, fitting the data with gamma functions for low energies and Gaussian distributions for high energies,
this can be reduced to around 10.000 trials. Still, the more data points are known, the more accurate the fit
becomes. Figure 4 shows the test statistic distribution for the 10% energy bin and the 0.25◦ angle bin, fitted
with a Gaussian.

The program loops over the double sum, and then loops over all energy and angle bins, increasing the
counter of the bin if both events have an energy above the energy bin’s cut and are separated by an angle
less than the maximum angle of the angle bin. Therefore ,the execution time of this algorithm increases with
O(n2), n being the number of events. Also, the execution time increases significantly with finer-grained binning.

As a single trial with 111,415 events selected from two years of data takes around 25 minutes on state-of-the
art CPU hardware, and several thousand trials are needed, the time this analysis takes to compute becomes a
problem. Due to the analysis scaling with O(n2), this is especially true when considering running the analysis
on a even larger data-set.
A possible solution to this problem is to use GPUs. In the course of this thesis, I ported the analysis to
the GPU, and found and implemented further optimizations in both CPU and GPU versions that significantly
reduced execution time and also made the execution time less dependent on the number of angle bins.

2.2. Moving the Analysis to the GPU

This method is optimal for a GPU, because the individual operations are not dependent of each other and
memory access is predictable and linear. Moving to the GPU, I parallelized the outer loop, starting N threads
in parallel, each thread picking one event and iterating over the second sum. This approach also has the
advantage that all data that is specific to an event, like the space angles of that event, can be kept in local

8

registers of the respective threads.
Additionally, I implemented methods to copy all necessary data to and from the GPU.

Comparing a single 3.3 GHz Intel Ivy Bridge CPU to a nVidia Geforce GTX Titan, this approach yields a speed
advantage of 70x, bringing the execution for one trial time down to 22 seconds from an original 25 minutes.

The resultant pair count is slightly different on the GPU compared to the CPU, this is due to differ-
ences in the implementation of trigonometric functions and different rounding. However, this effect is on the
order of 10−5 and statistical.

2.3. Further Improvements to the Algorithm

I found a number of improvements to the algorithm, that will work both on the CPU and on the GPU.

2.3.1. Sorting the Events by Zenith

Taking advantage of spacial locality in data structures, it is not necessary to compare every event with every
other event. If the events are sorted by zenith, the second loop can be interrupted once the separation of the
zenith angle alone between two events is larger than the angle of the largest bin, as the space angle is always
at least as large as the relative difference in zenith.

This was already implemented in the code as I got it, however, there was a error that prevented the optimiza-
tion from working.

This approach reduces the execution time on the CPU to 324 seconds from 1530 seconds, a speedup by a
factor of 4.7. On the GPU, the execution time sinks form 22 seconds to 3.4 seconds, a speedup of 6.5x.

2.3.2. Improved Binning

In the original code, the program loops over all bins, checking if the angle that was computed is smaller than
the maximum angle of the respective bin every time. Because the bins are equally spaced, the last bin that the
event pair is still in can also be obtained by multiplying the computed angle by 4 and rounding up. Once the
two loops have finished, the total pair count for each bin can be obtained by adding the sum of all smaller bins.

Using this, one trial is approximately 11% percent faster on the CPU and 17% on the GPU, reducing execution
times for one trial from 324s to 292s and 3.2s to 2.9s on the CPU and GPU, respectively.

As an interesting consequence of this, an almost arbitrary amount of angle bins can now be used without
notably increasing execution time.

2.3.3. Pre-Computing

A majority of the time spent by the program after these optimizations is spent calculating the space angle
between two events. The the space angle Ω between two vectors in polar coordinates can be calculated by
the equation:

Ω = arccos(sin(θ1)cos(φ1)sin(θ2)cos(φ2)+

sin(θ1)sin(φ1)sin(θ2)sin(φ2) + cos(θ1)cos(θ2))
(2.3)

this equation is evaluated O(n2) times. Trigonometric functions take a significant amount of time to compute.
The recurring terms sin(θ)cos(φ) , sin(θ)sin(φ) and cos(θ) do not depend on the position of the other particle,
therefore, they only have to be calculated once for every event, instead of once for every pair. I implemented

9

an algorithm to pre-calculate these values, reducing the complexity of these calculations to O(n) and only
leaving three multiplications, two additions and the inverse cosine to be done O(n2) times. The three values
for each event are computed and stored in arrays before the main loop begins.

This increases the execution speed by a factor of 6.5 on the CPU and 4.1 on the GPU, reducing execution
times from 292s to 45s on the CPU, and 2.9s to 0.7s on the GPU.

This can also be ported to other applications, I have also seen my implementation being used in the
MPS-HESE analysis, another analysis relying heavily on space angle calculation.

2.4. Conclusion

The execution time for one trial in the test-case was reduced from 1530 seconds to 45 seconds on the CPU,
and to 0.7 seconds using one of the graphics cards. Using a single nvidia GTX Titan card, it is now possible
to calculate 120.000 trials per day, opening the possibility of analyzing the 5σ range and beyond without
using fit functions. Also, the analysis can now be carried out on even larger data-sets without the time being
spent by computation becoming a limitation.

Optimization/Execution time [s] CPU GPU
Original 1530 22

Zenith sorting 324 3.4
Improved Binning 292 2.9
Pre-computing 45 0.7

Execution time in seconds for calculating one trial for the test statistic with 111415 events. CPU: Intel
Ivy bridge, 3,3 GHz, GPU: nvidia GK110, 876 MHz (GTX Titan)

10

3. Millipede

Figure 5 shows an example of an event registered by IceCube. Red colors represent DOMs that were hit
early in the time-frame, blue colors represent DOMs that were hit late in the time-frame. To reconstruct
these events, IceCube uses a wide variety of algorithms. See (Whitehorn 2012) and (Geisler 2010) for a
more detailed discussion on reconstruction methods. In short, there is the linefit method, which uses the
least-squares algorithm for a first approximation of the track. As this is a analytic method, it is very fast. Then
there is the pandel MPE fit, which optimizes a likelihood function based on the arrival time of the first photon
and assumes uniform ice properties. Optimization is done in the coordinates of the origin and the angles of
the muon track. Then there is millipede, which is used to reconstruct energy loss of high-energy muons, and
will be discussed in more detail below.

In addition to the continuous Cerenkov radiation, high energy muons have a stochastic energy loss
along their track due to statistical processes such as bremsstrahlung, photonuclear interactions and pair
production. Millipede is a method to estimate how much energy a muon registered by IceCube lost along
it’s track. Millipede uses the DOMs responses to calculate the most likely energy deposition for a postulated
muon track. This is done in discrete segments, usually 10-15 meters long. The output from millipede can
be used to achieve a more accurate likelihood value for the initial postulated track. The most likely track
can be estimated with a minimizing algorithm, or one can create a so-called full sky map, calculating the
likelihood for a large amount of points in a mesh. Tests show millipede should result in up to 10 times better
angular resolution than Pandel-function based approaches at high energies. (Whitehorn 2012, p.39) However,
millipede takes significant computing time, especially when many repetitions are necessary, like in a full sky
map. Using a GPU could allow more neutrino candidates to be reconstructed with millipede, and to use finer
grained settings where millipede is already used.

A first functioning implementation of a part of millipede has already been written by IceCube PhD Jakob van
Santen in openCL (van Santen, private communication). However, van Santen reported that his implementa-
tion was only about 10 times as fast as a single CPU thread in his test-case, not enough to justify the use of
GPUs given the much higher price of a graphics card compared to a single CPU core.
In the course of my thesis, I studied ways to improve the GPU algorithm. The work is still on-going, however
I will give a first report on the current status here.

3.1. How the Reconstruction works

The signal measured by one IceCube DOM is the result of light emitted along the entire length of the track.
If we cut the track into discrete segments, the energy measured by a DOM can be seen as the sum over the
product of the energies deposited in each segment with the likelihood of a photon from this segment arriving
at the DOM. Additionally, all DOMs are subject to a random noise term ν.
The signal kjt measured by a DOM j at time t can be written as:

kjt =
∑
i

EiPijt + ν (3.1)

Ei is the energy deposited by the muon in the segment i, consisting of the sum of the energy loss due
to Cerenkov radiation ECerenkov and the energy loss due to stochastic effects Estoch. DOMs with many
registered photons are split into multiple time bins. Pijt can be seen as an element of a Matrix Λ, containing
the probability for photons from each segment being registered by each DOM. Also, kj , E and ν can be
expanded to vectors containing all DOM signals, all energy depositions and all noise levels. The equation can
then be written as:

11

Fig. 5: An example of an event registered by IceCube, together with the track from the fastest reconstruction,
linefit. Each point represents a DOM. Red points are among the first DOMs to register photons, blue colored
DOMs registered photons towards the end of the time-frame. This specific event was triggered on 5th May
2011, 9:59:45 and was reconstructed by splineMPE to have an energy of 150 TeV

~k − ~ν = Λ · ~E (3.2)

The coefficients of Λ are calculated from a large set of pre-run simulations. The results of these simulations
is tabulated, using splines to span a multi-dimensional curve.

Inverting the matrix Λ, one can calculate ~E. This information can then be used to achieve a more precise
likelihood for the initial track.

A significant amount of time is spent calculating Λ, the so-called response matrix. The GPU version paral-
lelizes the calculation of these coefficients. Effectively, in this implementation the CPU does all necessary
calculations until it is known where the segments of the track are in the coordinate system, and then passes
this information on to the GPU, which builds the response matrix from the spline data.

The bulk ice on the south pole does not have uniform optical properties. The mean absorption and scattering
length of a photon varies greatly by depth, owing to layers of volcanic dust throughout the ice. Tables
containing the optical properties thus must consider the depth of the light source, and also the angle of
emission. The ash layers are slightly tilted in the ice, but the optical properties until recently were not assumed
to vary largely along the XY plane. Thus, the ice is assumed to be cylindrically symmetric around the z-axis
to reduce the size of the tables.

12

Fig. 6: B-Splines of order 1 (black) , 2(red) , 3 (blue) , 4 (green) , 5 (orange)

There are two types of tables: The five dimensional probability tables, which depend on the position of
the observer in three space coordinates, the depth of emission, and the angle of emission; and the six
dimensional timing tables, which also depend on the time between emission and detection.

3.2. B-Splines

The likelihood for a photon emitted from a section of the track to arrive at a DOM is calculated by simulation.
In the original version, this simulated data is tabulated in a discrete way. In between two data points, linear
interpolation is used to avoid sudden jumps in the data. However, this is problematic because the minimizing
algorithm requires the derivative to be continuous. To overcome this issue, second and third order B-Splines
are now used.

B-Splines are recursively self-convoluted functions, defined on a array of knots k0...kn. A spline of order n
can be continuously derived (n-1) times. The nth order B-Spline at x is defined as : (Whitehorn 2012)

Bk,1(x) =

1 ki ≤ x < tk+1

0 otherwise
(3.3)

Bk,n(x) =
x− tk

tk+n−1 − ki
Bk,n−1(x) +

ki+n − x
ki+n − ki+1

Bk+1,n−1(x) (3.4)

For a high order n, B-Splines converge towards Gaussian distributions. The splines can be used to
approximate a function, by multiplying the splines by a vector ~α

f(x) ≈
∑
i

αiBi,n(x) (3.5)

13

For multi-dimensional splines, the array of knots is expanded to a n-dimensional knot grid. The splines are
then expanded to tensor product surfaces, by taking the tensor product of n one-dimensional splines. A
n-dimensional function can then be approximated by multiplying every basis function by coefficients from an
n-dimensional grid ᾱ. These coefficients are calculated to create the spline tables. At any given point x in
a curve approximated by splines of order n, the splines Bi to Bi−n are non-zero, with i being the index of
the last knot ki that is smaller than x. All other splines are zero. For an n-dimensional spline, the amount
of non-zero tensor product surfaces is the product of the amount of non-zero splines in each dimension.
The values for the B-Splines can be calculated separately for each dimension, subsequently calculating the
tensor product. The splines used by millipede are order two splines in every dimension except for time in the
timing tables, which is order three. For the timing tables, this means that a six dimensional box with edge
lengths of 35x4, in total 972 values, have to be calculated.

3.3. Challenges

As shown in the last chapter, to evaluate one point in the probability tables, one has to evaluate 972 spline
values on a six dimensional box with edge lengths of 35x4. The tensor product itself can be built relatively
quickly, as the splines can be calculated separately for every dimension. However, each one of the 972
elements has to be multiplied by the respective coefficient from a 6-Dimensional coefficient array. At this
point, we reach a limitation of many GPU architectures: a high reading speed from memory can only be
achieved when the values are in order in the memory. However, it is not possible to store six-dimensional
data in such a way that the coefficients from every possible rectangle are in order.
This calculation has to be done for every element of the response matrix, a matrix of the size (# of DOMs and
time bins)x(#of track segments). With 5160 DOMs and in the order of 100 segments, this limitation becomes
significant. Van santen claims this one of the major reasons why his GPU implementation does not perform
as expected.

Just like a GPU sacrifices control logic for compute logic, the GPU’s memory controller design also incorpo-
rates some fundamental tradeoffs between speed and general purpose usability. The architecture assumes
that memory will usually be read in a linear fashion. Therefore, a memory controller will not simply load a
single value from memory, but always loads a larger chunk.

GPUs, like many CPUs have two levels of on-chip cache, a small fast memory storing data that is likely to
be used soon. There is a small L1 cache, with sizes in the order of some hundred kilobites, and a larger but
slower L2 cache, with sizes ranging in the order of megabytes.
According to the nvidia cuda developers guide, a GPU with compute capability 2.0 or higher will always fill
it’s L2 cache with at least 32 consecutive bytes at a time. The even faster L1 cache will be filled in chunks no
smaller than 128 bytes at a time. (nvidia 2014, G 4.1.2) This way, the GPU can load more data at a higher
speed with less overhead from managing the memory transactions.

If the memory is not accessed in a linear fashion, this will result in a lower effective memory bandwidth,
corresponding to the fraction of the pre-fetched line of memory that is actually used. This can significantly
slow down a GPU program, as the random memory reading speed of a GPU is not much higher than a
CPU’s. Therefore, it is important to keep memory access patterns in mind when designing GPU programs.
This design goal is called memory coalescence.

As the coefficients of the spline tables are stored in a 6-dimensional array, the maximum amount of
consecutive reads is 4, the amount of coefficients in the lowermost dimension of the array. As the coefficients
are 32-bit floating point values, this means we have 128 bits, or 16 bytes of consecutive data. This means
that, if the data is loaded into L2 cache, only half of the theoretical bandwidth is used. If the L1 is used, one

14

can only obtain 1
8 of the maximum bandwidth.

3.4. Redundant Memory

To overcome this limitation, I studied the use of redundant copies to increase spacial locality in the memory.
The spline tables are only about 500 MB in size, and the graphics cards I use have 6 GB of memory. This
led me to come up with a new approach, redundantly permutating the data in such a way to guarantee 12
consecutive coefficients in memory using timing tables, and 9 consecutive reads in probability tables. This
comes at the cost of 3-4 times more memory use compared to using non-redundant tables.

If we consider only the lowest two dimensions of the array, the six dimensional box turns into a rectangle. If
we consider the timing tables, as time has order 3 splines and in all other dimensions have order 2 splines,
and time is the lowermost dimension, this yields a rectangle with side lengths 4x3. Usually, this would be
stored in memory like this:

(1,1) (1,2) (1,3) (1,4) (1,5) ... (1,n)
(2,1) (2,2) (2,3) (2,4) (2,5) ... (2,n)
(3,1) (3,2) (3,3) (3,4) (3,5) ... (3,n)
(4,1) (4,2) (4,3) (4,4) (4,5) ... (4,n)
...
(m,1) (m,2) (m,3) (m,4) (m,5) ... (m,n)

(i,j) represents the coefficient with coordinates i and j in the 2nd and 1st dimension, respectively.

The red entries are those that would have to be read to calculate the spline value for a point that has 1,1
as the lowest point with non-zero splines. This means, that in a 2 dimensional projection, the point to be
evaluated lies within the rectangle spanned by (1,1) (1,2) (2,1) and (2,2). The case where the top most point
is (1,1) is shown for simplicity, usually the rectangle would lie somewhere in the middle. Here it can be seen
that every jump to a new row is also a jump in memory, thus never having more than the said 4 coefficients
next to each other.

The new permutation works like this: we take the first four coefficients from the first line, then the first four
from the second line and so on, until we reach the end of the second dimension. Then we start again, this
time taking the next four coefficients, and continue doing this until there are less than four coefficients left.
After this sorting, the data is now stored in memory like this:

[(1,1)(1,2)(1,3)(1,4)] [(2,1)...(2,4)] [(3,1)...(3,4)] [(m,1)...(m,4)]
[(1, 5)(1, 6)(1, 7)(1, 8)] [(2, 5)...(2, 8)] [(3, 5)...(3, 8)] [(m, 5)...(m, 8)]

...
[(1, n− 3)...(1, n)] [(2, n− 3)...(2, n)] [(3, n− 3)...(3, n)] [(m,n− 3)...(m,n)]

Higher dimensions are not affected by this process, and can simply be iterated over in the classical fashion.

As can be seen, all 12 coefficients of the box are now in order in memory. Of course, this only works
when lowest dimension of the top left coefficient is a multiple of four. All other cases can however be
accommodated by introducing a shift: We once again take four elements, but this time we start from the
second element in the first dimension:

15

[(1,2)(1,3)(1,4)(1,5)] [(2,2)...(2,5)] [(3,2)...(3,5)] [(m,2)...(m,5)]
[(1, 6)(1, 7)(1, 8)(1, 9)] [(2, 6)...(2, 9)] [(3, 6)...(3, 9)] [(m, 6)...(m, 9)]

...
[(1, n− 3)...(1, n)] [(2, n− 3)...(2, n)] [(3, n− 3)...(3, n)] [(m,n− 3)...(m,n)]

This process is then repeated two more times, with a shift of two and three, and then there are four redundant
copies of the same data. When evaluating, the program calculates its first dimension modulus four, and picks
the table with that offset. That table will have coefficients aligned for 12 consecutive reads in order.

It should be noted that n is no longer the number of coefficients in the first dimension, but rather the largest
number for which it is still possible to select a full four elements. B-Splines are only fully defined when there
are at least as many coefficients to the left of the point being evaluated as it’s order in that dimension, and at
least one to the right. There is a method that prevents requests from being too close to the edges, so the data
in the space between n and the real edges can safely be discarded. In theory, this could be used to reduce
the total amount of data. Ideally, the shortest dimension should be permuted to the last place, as here the
relative fraction of cut-away data from the aforementioned process is the greatest, requiring somewhat less
memory. However, in it’s current state, my implementation adds ’white space’ where the cut-away data would
have been. This is due to theway the data is accessed by the program, this will be later explained inmore detail.

It should also be noted that permuting the dimensions in such a way that time would be second-to-last, and
putting one of the other dimensions with order 2 in last place could lead to the same result but only need
three redundant copies instead of four.

In the course of the thesis, I implemented methods to do these permutations, copy the data to the GPU, and
then evaluate the splines using the new memory structures. The implementation can be shown to return the
same results as the original version.

With ~ξ containing the positions of one particle in all dimensions, ~Ξ the length of the data in each dimension,
and ~O the order of the splines, the following equation can be used to calculate the position Idx of a coefficient
in the redundant array with stride χ:

Idx = ξ2 ·O1 + (ξ1 − χ)%O1 ·O2 · Ξ1 + (ξ1 − χ)%O1 +

ndim∑
i=2

(

i∏
j=0

Oj)ξi (3.6)

The first term takes the position in the second dimension, which is identical to the number of boxes
before it in one line, an multiplies it by the order of the first dimension, identical to the length of a box. The
second term calculates which line of memory the point is in, and multiplies it by the length of a line. The third
therm calculates the position within the box. The final term calculates the position with respect to the rest of
the non-permuted dimensions.
While this equation may be complicated, it only has to be calculated once. There is a method in the original
code, which I modified, that pre-generates code specifically for one spline table. This takes advantage of
the fact that, once a starting position has been chosen, the relative distance to all following coefficients in
memory remains the same. Therefore, once the initial position is calculated, the program needs only to iterate
over the pre-calculated strides. This is also why I added ’white space’ where I could have reduced the size
of the tables. As the amount of data that is cut away differs between the permuted copies, this would require

16

a different branch of code for every table. Branching, however, would reduce the execution speed on a GPU.

3.5. Outlook

Preliminary results do not show significant improvement, however, I found that only a small fraction of the
time is spent in the considered functions in my test-case. Investigation into differences in hardware, software
environment and possible sources of overhead are ongoing. In theory, further coalescence could be gained
by applying the permutation again, additionally permutating the third dimension, yielding 36 consecutive
coefficients for the probability tables at the cost of 9 times the memory use. However, the additional memory
in modern graphics cards could also be used for more accurate spline tables. As it often is, a compromise
between speed and accuracy will have to be found.

17

4. Conclusion

During the work on my thesis, I found two very different programs from very different parts of the IceCube
collaboration. The experiences with porting these programs onto GPUs was equally different. The 2-pt
analysis had linear memory access, and could easily be split into multiple independent threads. Also, I could
find many optimizations to the algorithm itself. The reconstruction method millipede on the other hand proved
to be much more complicated, accessing memory in a highly non-linear fashion. Also, the CPU code was far
more optimized to begin with. This does not mean that no improvement is possible, I will continue to work
with the collaboration to finish my work on millipede.

18

Bibliography

Aartsen, M. G., Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Altmann, D., Arguelles, C.,
Auffenberg, J., Bai, X. & et al. (2014): Energy reconstruction methods in the IceCube neutrino telescope,
Journal of Instrumentation 9: 3009P.
URL: arXiv: 1311.4767

Aguilar, J. A. (2013): Neutrino searches with the IceCube telescope, Nuclear Physics B Proceedings
Supplements 237: 250–252.

Geisler, Matthias (2010): On the measurement of atmosperic muon-neutrino oscillations with icecube-
deepcore.

Jason Sanders, Edward Kandrot (2012): CUDA by Example, Addison-Wesley.

M.G. Aartsen, M. Ackermann J. Adams et al. (2014): Searches for small-scale anisotropies form neutrino
point sources with three years of icecube data.
URL: arXiv:1408.0634

nvidia (2012): the kepler gk110 whitepaper.
URL: "http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf"

nvidia (2014): cuda c programming guide.
URL: "http://docs.nvidia.com/cuda/cuda-c-programming-guide/

The IceCube Collaboration (2008): The IceCube Data Acquisition System: Signal Capture, Digitization, and
Timestamping, ArXiv e-prints: 0810.4930 .

Whitehorn, Nathan (2012): A search for high-energy neutrino emission from gamma-ray bursts.

19

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer
als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen (einschließlich elektronischer
Quellen) direkt oder indirekt übernommenen Gedanken sind ausnahmslos als solche kenntlich gemacht.

Garching bei München, 27.8.2014

Kevin Abraham

A Appendix

In the following pages, the code for the original CPU version, optimized CPU version and GPU version of the
Small-Scale Anisotropy test can be found. Also, the code for producing redundant copies of the data is in
the appendix.

	

Small-Scale	 Anisotropies,	 original	 Code:	
	
//return	 the	 angle	 between	 event	 and	 source	 for	 signal	 pdf	
inline	 double	 getSpaceAngle(double	 zenith1,	 double	 ra1,	 double	 zenith2,	 double	 ra2)	 //returns	 and	
accepts	 angles	 in	 radians	
{	
	 	 double	 x1=sin(zenith1)*cos(ra1);	
	 	 double	 x2=sin(zenith2)*cos(ra2);	
	 	 double	 y1=sin(zenith1)*sin(ra1);	
	 	 double	 y2=sin(zenith2)*sin(ra2);	
	
	 	 double	 space_angle=TMath::Abs(TMath::ACos(x1*x2+y1*y2+cos(zenith1)*cos(zenith2)));	
	 	 return	 space_angle;	
}	
	
vector	 <struct	 AutoResults>	 AutocorrelationFn(int	 N,	 vector<double>	 energy_cuts)	
{	
	 	 //	 create	 entries	 in	 results	 vector	 for	 each	 desired	 energy	 cut	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 vector	 <struct	 AutoResults>	 auto_results_energy_vector;	
	 	 for(int	 e=0;	 e<energy_cuts.size();	 e++)	
	 	 	 	 {	
	 	 	 	 	 	 struct	 AutoResults	 my_auto_result;	
	 	 	 	 	 	 my_auto_result.energycut=energy_cuts[e];	
	 	 	 	 	 	 auto_results_energy_vector.push_back(my_auto_result);	
	
	 	 	 	 }	
	
	 	 //	 initialize	 result	 structures	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 for(int	 e=0;	 e<auto_results_energy_vector.size();	 e++)	
	 	 	 	 {	
	 	 	 	 	 	 auto_results_energy_vector[e].thetapairs.clear();	
	 	 	 	 	 	 auto_results_energy_vector[e].thetavalues.clear();	
	 	 	 	 	 	 for(int	 thk=0;	 thk<(int)(max_auto_scale/step_auto_scale);	 thk++)	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 auto_results_energy_vector[e].thetavalues.push_back(step_auto_scale+thk*step_auto_scale);	
	 	 	 	 	 	 	 	 	 	 auto_results_energy_vector[e].thetapairs.push_back(0);	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	
	 	 double	 distance;	
	 	 int	 localpairs[4][20];	
	 	 for(int	 i	 =	 0;i<20;i++)	
	 	 	 localpairs[i]	 =	 0;	
	
	 	 //	 calculate	 distances	 and	 count	 pairs	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 for(int	 i=0;	 i<N-1;	 i++)	 //	 loop	 over	 all	 declination-sorted	 events	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 {	
	 	 	 	 	 	 //	 	 	 	 	 	 cout<<"event	 "<<i<<endl;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 for	 (int	 j	 =	 i+1;	 j<N;	 j++)	 //	 loop	 over	 all	 events	 which	 have	 not	 yet	 been	 counted	 	
	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 if(TMath::Abs(ScrambledEvents[i].declination-ScrambledEvents[j].declination)>=	
max_auto_scale/TMath::RadToDeg())	 break;	 //	 don't	 waste	 time	 by	 calculating	 large	 distances	
	 	 	 if(TMath::Abs(ScrambledEvents[i].ra-ScrambledEvents[j].ra)>=	 max_auto_scale*TMath::RadToDeg())	
continue;	 //	 don't	 waste	 time	 by	 calculating	 large	 distances	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 distance=getSpaceAngle(ScrambledEvents[i].declination+(pi/2),	 ScrambledEvents[i].ra	 ,	
ScrambledEvents[j].declination+(pi/2)	 ,ScrambledEvents[j].ra)*TMath::RadToDeg();	
	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 for(int	 e=0;	 e<auto_results_energy_vector.size();	 e++)	
	 	 	 	 	 	 	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 check	 if	 both	 events	 pass	 the	 energy	 cut	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 if(ScrambledEvents[i].energy>=auto_results_energy_vector[e].energycut	 &&	
ScrambledEvents[j].energy>=auto_results_energy_vector[e].energycut)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 {	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 for(int	 thk=0;	 thk<auto_results_energy_vector[e].thetavalues.size();	 thk++)	 //	 loop	 to	 check	 if	 we	
found	 a	 close	 enough	 pair	 for	 each	 scale	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 {	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 if(distance<=auto_results_energy_vector[e].thetavalues[thk])	
auto_results_energy_vector[e].thetapairs[thk]+=1.0;	 //	 got	 one	 ->	 count	 it!	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	 //	 end	 loop	 theta	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 }	 //	 end	 if	 energy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 }	 //	 end	 loop	 energy	 ranges	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 //}//end	 loop	 declination>decmin	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 }	 //	 end	 event	 loop	 j	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 }//end	 event	 loop	 i	 	 	
	
	
	
	 	 return	 auto_results_energy_vector;	
}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Small-Scale	 Anisotropies,	 Modified	 CPU	 Code:	
	
inline	 double	 getSpaceAngleOpt(double	 x1	 ,	 double	 y1	 ,	 double	 x2	 ,	 double	 y2	 ,	 double	 cZ1	 ,	 double	
cZ2)	 //returns	 and	 accepts	 angles	 in	 radians	
{	
	 /***	
	 this	 is	 the	 optimized	 version	 of	 getSpaceAngle,	 it	 uses	 pre-calculated	 values	
	 x1,	 x2,	 y1	 and	 y2	 are	 calculated	 once	 and	 saved	 in	 arrays,	 thus	 the	 compute-intensive	
	 sin	 and	 cosine	 must	 only	 be	 calculated	 once	 for	 every	 event,	 instead	 of	 once	 for	 every	 pair	
	 cZ1	 and	 cZ2	 are	 cosine	 of	 zenith1	 and	 cosine	 of	 zenith2	
	
	 ***/	
	
	 double	 space_angle=	 abs(acos(x1*x2+y1*y2+cZ1*cZ2));	
	 return	 space_angle;	
}	
	
vector	 <struct	 AutoResults>	 AutocorrelationFn(int	 N,	 vector<double>	 energy_cuts)	
{	
	 	 //	 create	 entries	 in	 results	 vector	 for	 each	 desired	 energy	 cut	
	 	 vector	 <struct	 AutoResults>	 auto_results_energy_vector;	
	 	 for(int	 e=0;	 e<energy_cuts.size();	 e++)	
	 	 	 	 {	
	 	 	 	 	 	 struct	 AutoResults	 my_auto_result;	
	 	 	 	 	 	 my_auto_result.energycut=energy_cuts[e];	
	 	 	 	 	 	 auto_results_energy_vector.push_back(my_auto_result);	
	
	 	 	 	 }	
	
	 	 //	 initialize	 result	 structures	
	 	 for(int	 e=0;	 e<auto_results_energy_vector.size();	 e++)	
	 	 	 	 {	
	 	 	 	 	 	 auto_results_energy_vector[e].thetapairs.clear();	
	 	 	 	 	 	 auto_results_energy_vector[e].thetavalues.clear();	
	 	 	 	 	 	 for(int	 thk=0;	 thk<(int)(max_auto_scale/step_auto_scale);	 thk++)	
	 	 	 	 	 	 {	
	 	 	 	 	 	 	 auto_results_energy_vector[e].thetavalues.push_back(step_auto_scale+thk*step_auto_scale);	
	 	 	 	 	 	 	 auto_results_energy_vector[e].thetapairs.push_back(0);	
	 	 	 	 	 	 }	
	 	 	 	 }	
	
	 	 double	 spAx[N];	 //space	 Angle,	 component	 x,	 cached	 to	 save	 execution	 time;	
	 	 double	 spAy[N];	 //-"-	 component	 y	
	 	 double	 cZ[N];	 	 //cosine	 of	 Zenith	
	
	
	 	 for(int	 i	 =	 0;i<N;i++){	
	 	 	 spAx[i]	 =	 sin(ScrambledEvents[i].declination+(pi/2))*cos(ScrambledEvents[i].ra);	
	 	 	 spAy[i]	 =	 sin(ScrambledEvents[i].declination+(pi/2))*sin(ScrambledEvents[i].ra);	
	 	 	 cZ[i]	 	 	 =	 cos(ScrambledEvents[i].declination+(pi/2));	
	 	 }	

	
	
	 	 double	 distance;	
	
	 	 //	 calculate	 distances	 and	 count	 pairs	
	 	 for(int	 i=0;	 i<N-1;	 i++)	 //	 loop	 over	 all	 declination-sorted	 events	
	 	 {	
	 	 	 //cout<<"event	 "<<i<<endl;	
	 	 	 for	 (int	 j	 =	 i+1;	 j<N;	 j++)	 //	 loop	 over	 all	 events	 which	 have	 not	 yet	 been	 counted	
	 	 	 {	
	 	 	 	 if(TMath::Abs(ScrambledEvents[i].declination-
ScrambledEvents[j].declination)*TMath::RadToDeg()>=	 max_auto_scale)	 break;	 //	 don't	 waste	 time	 by	
calculating	 large	 distances	
	 	 	 	 //	 	 if(TMath::Abs(ScrambledEvents[i].ra-ScrambledEvents[j].ra)>=	
max_auto_scale*TMath::RadToDeg())	 continue;	 //	 don't	 waste	 time	 by	 calculating	 large	 distances	
	 	 	 	 distance=getSpaceAngleOpt(spAx[i],	 spAy[i]	 ,	 spAx[j]	 ,	 spAy[j]	 ,	 cZ[i]	 ,	
cZ[j])*TMath::RadToDeg();	
	
	 	 	 	 if(distance>max_auto_scale)	
	 	 	 	 	 continue;	
	
	 	 	 	 for(int	 e=0;	 e<auto_results_energy_vector.size();	 e++)	
	 	 	 	 {	
	 	 	 	 	 //	 check	 if	 both	 events	 pass	 the	 energy	 cut	
	 	 	 	 	 if(ScrambledEvents[i].energy>=auto_results_energy_vector[e].energycut	 &&	
ScrambledEvents[j].energy>=auto_results_energy_vector[e].energycut)	
	 	 	 	 	 {	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 int	 bin	 =	 distance*4;	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 if(bin	 <	 20)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 auto_results_energy_vector[e].thetapairs[bin]++;	
	 	 	 	 	 }	 //	 end	 if	 energy	
	 	 	 	 }	 //	 end	 loop	 energy	 ranges	
	 	 	 	 //}//end	 loop	 declination>decmin	
	 	 	 }	 //	 end	 event	 loop	 j	
	
	 	 }//end	 event	 loop	 i	
	 	 for(int	 e	 =	 0;e<auto_results_energy_vector.size();e++){	
	 	 	 for(int	 i=1;i	 <	 auto_results_energy_vector[e].thetavalues.size();i++){	
	 	 	 	 auto_results_energy_vector[e].thetapairs[i]	 +=	 auto_results_energy_vector[e].thetapairs[i-1];	
	 	 	 }	
	 	 }	
	
	
	 	 return	 auto_results_energy_vector;	
}	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Small-Scale	 Anisotropies,	 Modified	 GPU	 Code:	
	
__device__	 inline	 double	 GPUgetSpaceAngle(double	 x1	 ,	 double	 y1	 ,	 double	 x2	 ,	 double	 y2	 ,	 double	
cZ1	 ,	 double	 cZ2)	 //returns	 and	 accepts	 angles	 in	 radians	
{	
	
	 ////double	 s1s2	 =	 sin(zenith1)*sin(zenith2);	
	 ////double	 c1c2	 =	 cos(ra1)*cos(ra2);	
	 ////double	 sr1r2	 =	 sin(ra1)*sin(ra2);	
	 //double	 x1=sin(zenith1)*cos(ra1);	
	 //double	 x2=sin(zenith2)*cos(ra2);	
	 //double	 y1=sin(zenith1)*sin(ra1);	
	 //double	 y2=sin(zenith2)*sin(ra2);	
	 ////double	 space_angle	 =	 abs(acos(s1s2*c1c2	 +	 s1s2*sr1r2	 +	 cos(zenith1)*cos(zenith2)));	
	 double	 space_angle=	 abs(acos(x1*x2+y1*y2+cZ1*cZ2));	
	 return	 space_angle;	
}	
	
__global__	 inline	 void	 calcAngle(const	 int	 N,	 const	 double*	 __restrict	 eventsDec	 ,	 const	 double*	
__restrict	 eventsRa	 ,	 double	 *spAx	 ,	 double	 *spAy	 ,	 double	 *cZ){	
	 int	 i	 =	 threadIdx.x	 +	 blockIdx.x*blockDim.x;	
	
	 if(i>=N)//only	 calculate	 if	 data	 set	 exists	 (due	 to	 cuda	 block	 size,	 some	 threads	 may	 have	 an	 i	 that	 is	
larger	 than	 N	
	 	 return;	
	
	 spAx[i]	 =	 sin(eventsDec[i]+(Pi/2))*cos(eventsRa[i]);	
	 spAy[i]	 =	 sin(eventsDec[i]+(Pi/2))*sin(eventsRa[i]);	
	 cZ[i]	 =	 cos(eventsDec[i]+(Pi/2));	
}	
__global__	 void	 gpuwork(const	 int	 N	 ,	 const	 double*	 __restrict	 eventsDec	 ,	 const	 	 double*	 __restrict	
eventsRa	 ,	
	 	 const	 double*	 __restrict	 eventsEnergy	 ,	 const	 double*	 __restrict	 energyCut	 ,	
	 	 const	 float*	 __restrict	 resultsThetaValues	 ,unsigned	 int	 *resultsThetaPairs	 ,	
	 	 const	 double	 *spAx	 ,	 const	 double	 	 *spAy	 ,	 const	 double	 *cZ){	
	
	 int	 i	 =	 threadIdx.x	 +	 blockIdx.x*blockDim.x;	
	
	 __shared__	 int	 localPairs[NBINS];	 	 //use	 shared	 memory	 to	 avoid	 atomic	 locking	
	 for(int	 idx	 =	 threadIdx.x;idx<NBINS;idx	 +=	 blockDim.x){	 //cooperatively	 set	 localPairs	 values	
	 	 localPairs[idx]	 =	 0;	
	 }	
	
	 if(i>=N)//only	 calculate	 if	 data	 set	 exists	 (due	 to	 cuda	 block	 size,	 some	 threads	 may	 have	 an	 i	 that	 is	
larger	 than	 N	
	 	 return;	
	
	 __syncthreads();	
	
	 double	 distance;	
	
	 double	 myspAx	 =	 spAx[i];	
	 double	 myspAy	 =	 spAy[i];	
	 double	 mycZ	 =	 cZ[i];	
	 for	 (int	 j	 =	 i+1;	 j<N;	 j++)	 //	 loop	 over	 all	 events	 which	 have	 not	 yet	 been	 counted	
	 {	
	 	 if(abs(eventsDec[i]-eventsDec[j])*RadToDeg	 >=	 ANGLE_BINS*STEPPING)	 break;	 //	 don't	
waste	 time	 by	 calculating	 large	 distances	

	 	 distance=	 GPUgetSpaceAngle(myspAx	 ,	 myspAy	 ,	 spAx[j]	 ,	 spAy[j]	 ,	 mycZ	 ,	 cZ[j])*RadToDeg;	
	 	 //	 if(distance>maxautoscale*RadToDeg)	 continue;	
	
	 	 int	 tBin	 =	 floor((double)(distance*multiply));	 //	 calculate	 bin	 (this	 is	 why	 STEPPING	 must	 be	
constant)	
	
	 	 if(tBin*STEPPING	 ==	 distance)	 //filter	 out	 cases	 where	 event	 is	 on	 the	 edge	 (to	 give	 identical	
results	 as	 <=	 on	 the	 CPU)	
	 	 	 tBin--;	
	 	 if(tBin	 >=	 ANGLE_BINS)	
	 	 	 continue;	
	
	 	 for(int	 e=0;	 e<ENERGY_BINS;	 e++)	
	 	 {	
	 	 	 //	 check	 if	 both	 events	 pass	 the	 energy	 cut	
	 	 	 if(eventsEnergy[i]>=energyCut[e]	 &&	 eventsEnergy[j]>=energyCut[e])	
	 	 	 {	
	 	 	 	 atomicAdd(&localPairs[e*ANGLE_BINS	 +	 tBin]	 ,	 1);	
	 	 	 }	 //	 end	 if	 energy	
	 	 }	 //	 end	 loop	 energy	 ranges	
	 	 //}//end	 loop	 declination>decmin	
	 }	 //	 end	 event	 loop	 j	
	 __syncthreads();	
	 for(int	 idx	 =	 threadIdx.x;idx<NBINS;idx	 +=	 blockDim.x){	 	 //cooperatively	 write	 results	 to	 global	
memory	
	 	 atomicAdd(&resultsThetaPairs[idx]	 ,	 localPairs[idx]);	
	 	 int	 a	 =	 idx;	
	 	 while(a%ANGLE_BINS	 !=	 0){	 //add	 all	 values	 of	 lower	 bins	
	 	 	 a--;	
	 	 	 atomicAdd(&resultsThetaPairs[idx]	 ,	 localPairs[a]);	
	
	 	 }	
	 }	
	
	 return;	
}	
vector	 <struct	 AutoResults>	 calculate(vector<double>	 *energy_cuts	 ,	 vector<struct	 AutoResults>	 *results	 ,	
vector<struct	 event>	 *ScrambledEvents	 ,	 int	 N){	
	
	
	 //Copy	 and	 reformat	 data	 to	 work	 on	 GPU	
	
	 	
	 double	 *GPUeventsDec;	
	 double	 *GPUeventsRa;	
	 double	 *GPUeventsEnergy;	
	 	
	 double	 *eventsDec	 =	 	 	 (double*)	 malloc(N*sizeof(double));	 	 //	 allocate	 memory	 on	 CPU	
	 double	 *eventsRa	 =	 	 	 	 (double*)	 malloc(N*sizeof(double));	
	 double	 *eventsEnergy=	 (double*)	 malloc(N*sizeof(double));	
	
	
	 for(int	 i	 =	 0;i	 <	 N	 ;i++){	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //fill	 values	
	 	 eventsDec[i]	 =	 	 (double)	 	 (*ScrambledEvents)[i].declination;	
	 	 eventsRa[i]	 =	 	 	 (double)	 	 (*ScrambledEvents)[i].ra;	
	 	 eventsEnergy[i]	 =	 (double)	 (*ScrambledEvents)[i].energy;	
	 }	
	
	 cudaMalloc((void**)&GPUeventsDec	 ,	 	 	 	 N*sizeof(double));	 	 //allocate	 memory	 on	 GPU	
	 cudaMalloc((void**)&GPUeventsRa	 ,	 	 	 	 	 N*sizeof(double));	

	 cudaMalloc((void**)&GPUeventsEnergy	 ,	 N*sizeof(double));	
	 //copy	 data	 to	 GPU	
	
	
	 cudaMemcpy(GPUeventsDec	 ,	 	 	 	 eventsDec	 	 	 	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	 cudaMemcpy(GPUeventsRa	 ,	 	 	 	 	 eventsRa	 	 	 	 	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	 cudaMemcpy(GPUeventsEnergy	 ,	 eventsEnergy	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	
	 //initialize	 angle	 caches	
	 double	 *spAx;	 //saves	 values	 for	 angle	 calculation	
	 double	 *spAy;	
	 double	 *cZ;	
	
	 double	 *cpuA	 =	 (double*)	 malloc(N*sizeof(double));	
	 for(int	 i	 =0;i<N;i++){	
	 	 cpuA[i]	 =	 0;	
	 }	
	
	
	 cudaMalloc((void**)&spAx	 ,	 N*sizeof(double));	
	 cudaMalloc((void**)&spAy	 ,	 N*sizeof(double));	
	 cudaMalloc((void**)&cZ	 ,	 N*sizeof(double));	
	 cudaMemcpy(spAx	 ,	 cpuA	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	 cudaMemcpy(spAy	 ,	 cpuA	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	 cudaMemcpy(cZ	 	 	 ,	 cpuA	 ,	 N*sizeof(double)	 ,	 cudaMemcpyHostToDevice);	
	
	
	 calcAngle<<<N/(blockSize)	 +	 1	 ,	 blockSize>>>(N	 ,	 GPUeventsDec	 ,	 GPUeventsRa	 ,	 spAx	 ,	 spAy	 ,	 cZ);	
	
	
	
	
	 double	 *energyCut	 =	 	 (double*)	 malloc(ENERGY_BINS*sizeof(double));	
	 double	 *GPUenergyCut;	
	
	 for(int	 i	 =	 0;	 i	 <	 ENERGY_BINS	 ;	 i++){	
	 	 energyCut[i]	 =	 (*energy_cuts)[i];	
	 }	
	
	
	 cudaMalloc((void**)&GPUenergyCut	 ,	 ENERGY_BINS*sizeof(double));	
	 cudaMemcpy(GPUenergyCut	 ,	 energyCut	 ,	 ENERGY_BINS*sizeof(double)	 ,	
cudaMemcpyHostToDevice);	
	
	 unsigned	 int	 *resultsThetaPairs	 =	 	 (unsigned	 int*)	 malloc(NBINS*sizeof(unsigned	 int));	
	 float	 *resultsThetaValues	 =	 (float*)	 malloc(NBINS*sizeof(float));	
	
	 unsigned	 int	 *GPUresultsThetaPairs;	
	 float	 *GPUresultsThetaValues;	
	
	 cudaMalloc((void**)&GPUresultsThetaPairs	 	 ,	 NBINS*sizeof(unsigned	 int));	
	 cudaMalloc((void**)&GPUresultsThetaValues	 ,	 NBINS*sizeof(float));	
	
	 for(int	 i	 =	 0;	 i	 <	 ENERGY_BINS	 ;	 i++){	
	 	 for(int	 j	 =	 0;j<ANGLE_BINS;j++){	
	 	 	 resultsThetaPairs[i*ANGLE_BINS	 +	 j]	 =	 0;	
	 	 	 resultsThetaValues[i*ANGLE_BINS	 +	 j]	 =	 (float)	 (*results)[i].thetavalues[j];	
	 	 }	
	
	 }	

	 	 cudaMemcpy(GPUresultsThetaPairs	 	 ,	 resultsThetaPairs	 	 ,	 NBINS*sizeof(unsigned	 int)	 ,	
cudaMemcpyHostToDevice);	
	 	 cudaMemcpy(GPUresultsThetaValues	 ,	 resultsThetaValues	 ,	 NBINS*sizeof(float)	 ,	
cudaMemcpyHostToDevice);	
	
	
	
	
	
	
	
	
	
	 cout<<"starting	 GPU	 kernel..."<<endl;	
	 gpuwork<<<N/blockSize	 +	 1,blockSize>>>(N	 ,	 GPUeventsDec	 ,	 GPUeventsRa	 ,	 GPUeventsEnergy	 ,	
	 	 	 GPUenergyCut	 ,	 GPUresultsThetaValues	 ,	 GPUresultsThetaPairs	 ,	 spAx	 ,	 spAy	 ,	 cZ);	
	 cudaDeviceSynchronize();	
	 cout<<"...GPU	 kernel	 finished"<<endl;	
	
	 unsigned	 int	 *thResults	 =	 (unsigned	 int*)	 malloc(NBINS*sizeof(unsigned	 int));	
	
	 cudaMemcpy(thResults,	 GPUresultsThetaPairs,	 NBINS*sizeof(unsigned	 int)	 ,	
cudaMemcpyDeviceToHost);	
	
	 cudaError	 	 err=cudaGetLastError();	
	 if(err	 !=	 cudaSuccess){	
	 	 cout<<"--------------------	 Cuda	 Error	 ---------------------"<<endl;	
	 	 cout<<"cuda	 returned	 error	 code:"<<endl;	
	 	 cout<<cudaGetErrorString(err)<<endl;	
	 }	
	
	 for(int	 i	 =	 0;	 i	 <	 ENERGY_BINS	 ;	 i++){	
	
	 	 for(int	 j	 =	 0;j<ANGLE_BINS;j++){	
	 	 	 (*results)[i].thetapairs[j]	 =	 thResults[i*ANGLE_BINS	 +	 j];	
	 	 //	 cout<<"Energy	 "<<	 i	 <<	 "	 angle	 bin	 "	 <<	 j	 <<	 "	 has	 "	 <<	 thResults[i*angleBins	 +	 j]	 <<	 "	
hits	 "	 <<	 endl;	
	 	 }	
	
	 }	
	
	 cudaFree(GPUenergyCut);	
	 cudaFree(GPUeventsDec);	
	 cudaFree(GPUeventsRa);	
	 cudaFree(GPUeventsEnergy);	
	 cudaFree(GPUresultsThetaPairs);	
	 cudaFree(GPUresultsThetaValues);	
	 cudaFree(spAx);	
	 cudaFree(spAy);	
	 cudaFree(cZ);	
	 free(cpuA);	
	 free(energyCut);	
	 free(eventsDec);	
	 free(eventsRa);	
	 free(eventsEnergy);	
	 free(resultsThetaPairs);	
	 free(resultsThetaValues);	
	 	 	 	 //cudaDeviceReset();	
	 return	 *results;	
}	

	

Millipede,	 create	 Redundancy:

void	
splinetable_create_redundant_data(struct	 splinetable	 *table){	
	
	
	 int	 ndim	 =	 table->ndim;	
	 int	 redundancy	 =	 table->order[table->ndim	 -	 1]	 +	 1;	
	 unsigned	 long	 total_size	 =	 table->strides[0]*table->naxes[0];	
	 unsigned	 long	 redundant_size	 =	 total_size;	
	 unsigned	 long	 redPos	 =	 0;	
	 float	 *redundantData	 =	 (float*)	 malloc(redundancy*redundant_size*sizeof(float));	
	 unsigned	 long	 **newStrides	 =	 (unsigned	 long**)	 malloc(redundancy*sizeof(unsigned	 long*));	
	 printf("creating	 redundancy...	 \n");	
	 for(int	 perm	 =	 0;perm	 <	 redundancy	 ;perm++){	
	 	 /*	 boxes	 that	 are	 not	 full	 are	 ignored,	 as	 ndsplineeval	 ensures	 that	 full	 box	 is	 in	 range,	
	 	 	 *	 	 this	 makes	 strides	 for	 higher	 dimensions	 slightly	 shorter	 */	
	 	 int	 d1realL	 =	 table->naxes[ndim-1]	 -	 ((table->naxes[ndim-1]	 -	 perm)	 %	 redundancy);	 	 //	 new	 length	 of	 1st	
dim	
	 	 int	 stride3	 =	 table->naxes[ndim-2]*(d1realL	 -perm);	
	 	 newStrides[perm]	 =	 (unsigned	 long*)	 malloc(table->ndim*sizeof(unsigned	 long));	
	 	 newStrides[perm][ndim-1]	 =	 1;	
	 	 newStrides[perm][ndim-2]	 =	 table->naxes[ndim-1];	
	 	 newStrides[perm][ndim-3]	 =	 table->naxes[ndim-2]*table->naxes[ndim-1];//stride3;	
	
	 	 	 for(int	 i	 =	 ndim-4;	 i	 >=	 0	 ;i--){	
	 	 	 	 newStrides[perm][i]	 =	 newStrides[perm][i+1]*table->naxes[i+1];	
	 	 	 }	
	
	
	 	 for(unsigned	 long	 pos	 =	 0;pos<total_size;pos++){	
	 	 	 int	 dim_1	 =	 (pos	 /	 table->strides[ndim-1])	 %	 table->naxes[ndim-1];	 //position	 in	 	 1st	 dim	
	 	 	 int	 dim_2	 =	 (pos	 /	 table->strides[ndim-2])	 %	 table->naxes[ndim-2];	 //position	 in	 	 2nd	 dim	
	 	 	 /*	 ignore	 incomplete	 boxes	 */	
	 	 	 if(dim_1	 >=	 	 d1realL	 ||	 dim_1	 <	 perm)	
	 	 	 	 continue;	
	
	 	 	 redPos	 =	 0;	 //	 position	 of	 coefficients[pos]	 in	 redundant	 array	
	
	 	 	 /*higer	 dimensions	 do	 not	 change	 */	
	 	 	 for(int	 dim	 =	 0;dim<table->ndim-2;dim++){	
	 	 	 	 redPos	 +=	 ((pos	 /	 table->strides[dim])	 %	 table->naxes[dim])*newStrides[perm][dim];	
	 	 	 }	
	
	 	 	 redPos	 +=	 dim_2*redundancy;	 //shift	 beween	 boxes	
	 	 	 redPos	 +=	 ((dim_1	 -	 perm)	 /	 redundancy)*redundancy*table->naxes[ndim-2];	 //row	
	 	 	 redPos	 +=	 (dim_1	 -	 perm)	 %	 redundancy;	 //position	 in	 box	
	
	 	 	 redundantData[perm*redundant_size	 +	 redPos]	 =	 table->coefficients[pos];	
	
	 	 }	
	 }	
	 table->redundantData	 =	 redundantData;	
	 table->redundantStrides	 =	 newStrides;	
	
	 //for(int	 i	 =	 0;i<100000;i++)	
	 //	 printf("	 %d	 %f	 \n	 "	 ,	 i	 ,	 table->redundantData[i]);	
	
}	
	
	
	
	
	
	

	Introduction
	IceCube
	Graphics Cards for General Purpose Computing

	Small-Scale Anisotropies
	The Analysis
	Moving the Analysis to the GPU
	Further Improvements to the Algorithm
	Sorting the Events by Zenith
	Improved Binning
	Pre-Computing

	Conclusion

	Millipede
	How the Reconstruction works
	B-Splines
	Challenges
	Redundant Memory
	Outlook

	Conclusion
	Appendix

