
free problem, when we set ! = 0 (this is the same as having V = 0 everywhere).
Thus we are saying

h0| exp(�iHT/~)|0i = h0| exp(�iHT/~)|0i
h0| exp(�iHT/~)|0ifree

r
m

2⇡i~T

=
1Y

n=1


m

✓
n2⇡2

T 2
� !2

◆��1/2 1Y

n=1


m

✓
n2⇡2

T 2

◆�1/2r
m

2⇡i~T

=
1Y

n=1

✓
1�

T 2!2

n2⇡2

◆��1/2r
m

2⇡i~T

Now we can use a product formula that is due to L. Euler, who found it in
working on the so-called Basel problem (1735):

sin(x) = x
1Y

n=1

✓
1�

x2

⇡2n2

◆

We thus obtain the final result:

h0| exp(�iHT/~)|0i =

sin!T

!T

��1/2r m

2⇡i~T =

r
m!

2⇡i~ sin!T

In the limit ! ! 0 we see that result reduces to the free problem. In the case,
where the V (x) is quadratic, this is an exact result. For other V ’s this is of
course only an approximation.

Many-body physics using the field integral

The view of quantum field theory is that each particle type has an underlying
field, which can be disturbed to produce an excitation that we recognize as a
particle. If we excite the electromagnetic field we produce a particle called the
photon. An example from condensed matter physics, is the concept of lattice
vibrations. Since the underlying stu↵ that is moving are the particles making up
the lattice, and since those are described by quantum mechanics, the vibrations
themselves are quantized. The corresponding field is called the phonon field
and the excitations are called phonons. For the purposes of condensed matter
physics these quasiparticles are just as real as elementary particles.

We have seen how quantum many-body problem can be formulated in the
language of second quantization. For example, the quantum many-body prob-
lem of fermions interacting with each other is described by

H =
X

k

k2

2m
a+k�ak� +

X

k,k0,q

e2

q2
a+k�q�a

+
k0+q�0ak0�0ak�.

Our task in this section is to find a formulation of this problem in terms of
something like a path integral, which is called the field integral. The di↵erence to
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our previous problem is that we have here a second-quantized Hamiltonian, while
before we had a conventional (sometimes called first-quantized) Hamiltonian.
Recall how we handled the conventional Hamiltonian: We started with the time
evolution operator exp(i/~HT ) that we sliced into small pieces exp(i/~H�t),
which could be expanded in �t. Then we inserted |xi’s and |pi’s at the right
places that converted the operator H into an ordinary number, since these are
the eigenstates of the kinetic and potential energy parts of H.

In order to construct the field integral we will have to find states that turn the
second quantized operators H into ordinary numbers. We need a state that is
an eigenstate of the second quantized operators. Such a state is called a coherent
state. These coherent states turn out to be di↵erent depending on whether one
has bosons or fermions. In the case of fermions one needs to introduce a new
kind of mathematical object called a Grassmann variable. We will therefore
first tackle the coherent states for bosons. After we have done that, introducing
Grassmann variables will be only one additional step that has to be taken in
order to arrive at the fermion coherent states.

Coherent states

Let us begin with the simplest case, where our system has only one state and
we can fill it up with bosons. We can populate the state by acting with a+ and
we can depopulate the state using a. Then acting with a+’s on the vacuum of
Fock space |0i, we obtain consecutively the Fock states with more and more
bosons. The state with n-particles is given by

|ni =
1

p
n!
(a+)n|0i.

Let |�i now be an eigenstate of a (the operator a+has no eigenstates. If you
haven’t seen this, it is another nice exercise to think about). We can represent
any Fock space state by a superposition of basis states |ni, thus:

|�i =
X

n

�n|ni (10)

We want
a|�i = �|�i,

where � is the eigenvalue associated with state |�i. Acting with a on (10) we
thus obtain:

�|�i = a|�i =
X

n

�na|ni =
X

n

�n
p
n|n� 1i =

X

n

�n+1

p
n+ 1|ni

Thus by comparing the coe�cients on both sides, we obtain

��n = �n+1

p
n+ 1

! �n+1 =
�

p
n+ 1

�n.
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We can easily solve this recursing by unfolding it step by step:

�n+1 =
�

p
n+ 1

�n =
�2

p
n+ 1

p
n
�n�1 = · · · =

�n+1

p
(n+ 1)!

�0

Thus we have the result that

|�i =
1X

n=0

�n
p
n!
|ni =

1X

n=0

(�a+)n

n!
|0i = exp(�a+)|0i

is an eigenstate of a:
a|�i = �|�i.

By taking a hermitian conjugate of this equation we obtain another identity:

h�|a+ = h�|�⇤,

i.e. the a+ has a left eigenstate.
The state |�i is a superposition of Fock states with di↵erent particle num-

bers. This is a weird concept from the point of view of conventional N particle
quantum mechanics, where the number of particles in a system never changes.
But it will prove to be an extremely useful concept when dealing with second
quantized Hamiltonians that allow for particle number changes.

In the derivation we will need a few identities. Let us discuss these briefly.
We will need to know what is the overlap between two di↵erent states |�1i and
|�2i. To compute this we just have to apply the definitions:

h�2|�1i =
1X

m=0

�⇤m2
p
m!

hm|

1X

n=0

�n1
p
n!
|ni =

1X

n=0

(�1�⇤2)
n

n!
= exp(�⇤2�1)

Thus we see that two coherent states are never orthogonal, they always have a
finite inner product.

When we construct the field integral below, we will have to insert resolutions
of identity involving coherent states. Thus we need to know how to represent
by something like

R
d�|�ih�|. The correct identity turns out to be

=

+1Z

�1

+1Z

�1

d�xd�y
⇡

e��
⇤
�
|�ih�|,

where �x and �y are the real and imaginary part of �. The integration is
thus extended over all the values of � in the complex plane. This completeness
relation is a also the reason why � has to be complex. We will now see this in
the proof.

To demonstrate this identity we use the definition of |�i:

+1Z

�1

+1Z

�1

d�xd�y
⇡

e��
⇤
�
|�ih�| =

1X

n,m=0

+1Z

�1

+1Z

�1

d�xd�y
⇡

e��
⇤
�
�n
p
n!
|nihm|

�⇤m
p
m!
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In order to further evaluate it, we change from the �x,�y integration to polar
coordinats: �x = ⇢ cos ✓ and �y = ⇢ sin ✓:

1X

n,m=0

1Z

0

2⇡Z

0

d⇢⇢d✓

⇡
e�⇢

2 ⇢n+mei(n�m)✓

p
n!

|nihm|
1

p
m!

The integration over ✓ kills all terms in the double sum except for the n = m
terms:

1X

n=0

1Z

0

d⇢⇢2⇡

⇡
e�⇢

2 ⇢2n

n!
|nihn|

Now we take up the integration over ⇢ by changing to a variable u = ⇢2:

1Z

0

d⇢⇢ e�⇢
2

⇢2n =
1

2

1Z

0

du e�uun =
n!

2

Thus we obtain

+1Z

�1

+1Z

�1

d�xd�y
⇡

e��
⇤
�
|�ih�| =

1X

n=0

n!

2

2⇡

⇡

1

n!
|nihn| =

1X

n=0

|nihn| = ,

ie.. we obtain the in Fock-space. Note that it was crucial to have complex
numbers as the domain of integration. If we had only allowed real �’s the phase
factor ei(n�m)✓ would not have appeared and we wouldn’t have produced the
sum over |nihn|.

So far we have dealt with the simplest case of bosons occupying a single
state created by a. In general a boson can exist in many states and we will
have at least one additional quantum number specifying the state. Thus we will
have operators a+

i
with many di↵erent values of i, creating bosons in various

quantum states. Since boson creation operators commute it is straightforward
to generalize the coherent state construction from above to this more general
setting. Only the notation gets a little bit more elaborate. The Fock-space is
spanned by the occupation number basis states:

|n1n2 . . . i

which describes a state occupied by n1 bosons in state i = 1, n2 bosons in state
i = 2 and so on. It is formally constructed by acting on the Fock space vacuum
with

|n1n2 . . . i =
(a+1 )

n1

p
n1!

(a+2 )
n2

p
n2!

. . . |0i

We find that the state defined by

|�i =
Y

i

exp
�
�ia

+
i

�
|0i = exp

 
X

i

�ia
+
i

!
|0i
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is a coherent state for all the operators ai. The second equality holds because
all the a+

i
commute with each other. It is clear that |�i is a coherent state since

ai commutes with all a+
j
for j 6= i. Thus

aj |�i = aj
Y

i

exp
�
�ia

+
i

�
|0i = �j

Y

i

exp
�
�ia

+
i

�
|0i = �j |�i

for all j. Thus |�i is a coherent state for all annihilation operators.
Returning with this |�i to the rules we found above, it is easy to generalize

them:

h�0|�i = exp(
X

i

�
0⇤
i
�i)

The completeness relation becomes

=

+1Z

�1

Y

i

+1Z

�1

d�ixd�iy
⇡

exp(�
X

i

�⇤
i
�i)|�ih�| =

Z
d(�⇤,�) exp(�

X

i

�⇤
i
�i)|�ih�|.

(11)
In the last equality we have combined all the integrations over the (infinite)
product over states i into one symbol

R
d(�⇤,�). These are all the results we

need to derive the field integral for any body systems.

Field integral for many body systems

Similar to what we have learned for single particle systems, the central object
in equilibrium many-body physics is the partition function Z. Once we have
a handle on Z we can derive all kinds of equilibrium properties of a many-
body system, as for example correlation functions that can be measured in
experiments. These correlation functions are similar to the averages that we
computed using Wick’s theorem. After expressing the partition function as a
field integral we can using all those results to compute these averages.

We begin with a second-quantized Hamiltonian. It is enough for us to take
a schematic form of the type

H =
X

ij

Tija
+
i
aj +

X

ijkl

Vijkla
+
i
a+
j
akal.

For instance, the a’s could be the annihilation operators for momentum eigen-
states. Then the first term would be a kinetic energy and the second term
would provide interactions between the particles. The gandcanonical partition
function is given by

Z = Tre��(H�µN) =
X

n

hn|e��(H�µN)
|ni,

where n are all the Fock space states. The operator N is the particle number
operator that counts the number of particles in the system and is given by

N =
X

i

a+
i
ai.
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The parameter µ is the chemical potential that we can adjust to set the number
of particles to the desired value.

As with the single particle problem we perform a change of basis from the
states |ni to the coherent states that we have been developing. We do this by
inserting the resolution of identity (11):

Z =

Z
d(�⇤,�) e�

P
i �

⇤
i �i ·

X

n

hn|�ih�|e��(H�µN)
|ni

Now we move hn|�i to the very right and use
P

n
|nihn| = 1 to bring Z into the

form:

Z =

Z
d(�⇤,�) e�

P
i �

⇤
i �i · h�|e��(H�µN)

|�i

Notice that ~� has units of time. In fact the exponential looks like a time
evolution operator with imaginary time. We therefore proceed as we did with
the path integral. We slice the exponential into M factors by dividing the
imaginary time ~� into M parts (we use the symbol M in order to distinguish
it from the particle operator N):

Z =

Z
d(�⇤,�) e�

P
i �

⇤
i �i · h�|e�

�~
M

1
~ (H�µN)

· · · e�
�~
M

1
~ (H�µN)

|�i

Now we insert the identity (11) between the exponentials. This adds M � 1
integrations. We label the integrals by

R
d(�(n)⇤,�(n)). Let us look at what

happens to an exponential factor when we do this. We will have factors that
look like this

h�(n+1)
|e�

�~
M

1
~ (H�µN)

|�(n)i

Now in the limit where M is very large (in the end we let M ! 1), the expo-
nent can be expanded to first order. After that we can let the coherent states
|�(n)i and h�(n+1)

| act on the Hamiltonian and N operator and re-exponentiate
everything. The e↵ect of this is to replace the a+ and a operators by �(n+1)⇤

and �(n) respectively. We denote this Hamiltonian by H(�(n+1)⇤,�(n)) and the
N operator by N(�(n+1)⇤,�(n)). Thus we obtain

h�(n+1)
|e�

�
M (H�µN)

|�(n)i = e�
�~
M

1
~ (H(�(n+1)⇤

,�
n)�µN(�(n+1)⇤

,�
n))

h�(n+1)
|�(n)i

= e�
�~
M

1
~ (H(�(n+1)⇤

,�
n)�µN(�(n+1)⇤

,�
n))e

P
i �

(n+1)⇤
i �

(n)
i

Where we have used the overlap formula to compute h�(n+1)
|�(n)i. You see that

these formulas become somewhat unwieldy, since we are also carrying around a
sum over the index i. Let us suppress this sum, we can always put it back later.
With this the partition function becomes

Z =
NY

n=1

Z
d(�(n)⇤,�(n)) e�

PM
n=1 �

(n)⇤
�
(n)

e
PM

n=0 �
(n+1)⇤

�
(n)� �~

M
1
~ (H(�(n+1)⇤

,�
n)�µN(�(n+1)⇤

,�
n))

=
NY

n=1

Z
d(�(n)⇤,�(n)) e

�
PM�1

n=0

"
(�(n+1)⇤��(n))

� �
(n)� 1

~ (H(�(n+1)⇤
,�

n)�µN(�(n+1)⇤
,�

n))

#
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where we defined � = �~
M

and by �(0) = M we mean �.
Let us now take the continuum limit M !. We obtain

Z =

Z

�(0)=�(�~)

D(�⇤,�)e�
1
~S[�⇤

,�] (12)

with

S[�⇤,�] =

�~Z

0

d⌧ [~�⇤@⌧�+H(�⇤,�)� µN(�⇤,�)]

and also we lumped the coherent state integrals into one big functional integral
Z

D(�⇤,�) =

Z
d(�(n)⇤,�(n)).

Since in our derivation we noted that �(0) = �(M), the integral in (12) has to
carried out with the restriction that �(⌧ = 0) = �(⌧ = �~), i.e. we perform a
big functional integral over field configurations with the condition that after the
imaginary time �~ has passed the fields are back to the way they were.

The Field integral for fermions

There is something peculiar that goes on when we try to construct a coher-
ent state for fermionic systems. Let the creation operators for fermions be
a+
i
. We know that fermions satsify the Pauli principle and thus have an anti-

commutation relation between them:

aia
+
j
+ a+

j
ai = �ij

aa = a+a+ = 0

Now imagine that | i is a coherent state for fermions, i.e.

ai| i =  i| i

aj | i =  i| i.

Then let’s consider this (for i 6= j)

aiaj | i =  i j | i

But at the cost of a minus sign, we can also reverse the order of ai and aj before
we let those act on the coherent state:

aiaj | i = �ajai| i = � j i| i

Thus
 i j = � j i
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and at this point we could conclude that it is impossible to construct a coherent
state for fermions, since ordinary numbers don’t anticommute. But it turns out
that there is a mathematical system of numbers, called the Grassmann numbers,
that have exactly this property. We can use them to construct coherent states
and out of that field integrals.

We introduce Grassmann variables by saying that first of all they anti-
commute:

 i j = � j i

This implies that the square of a Grassmann variable is 0:

 2 = 0

Let’s look at a function of a Grassmann number f( ). We define this by
inserting the  as the argument in the Taylor expansion of f . It turns out that
such functions on Grassman variables have much less complexity than functions
defined on ordinary numbers. Since the square of  is 0, we are left with only
the constant and the first order term in  :

f( ) = f(0) + f 0(0) 

Here f(0) and f 0(0) are ordinary numbers and we will say that Grassmann
variables commute with ordinary numbers.

We could also generalize this to functions of more variables. To define
f( 1, . . . , N ), a multivariable function, one can expand f by the generalized
Taylor expansion. Instead of giving the general formula (which we won’t need)
let us look at a particular case. Let’s say we have a function of two variables
f(x, y) and we want the Grassmann version. Then we compute

f( 1, 2) = f(0, 0) +
@f

@x

����
x,y=0

 1 +
@f

@y

����
x,y=0

 2 +
@2f

@x@y

����
x,y=0

 1 2

All the other terms have higher powers of either  1 or  2 and therefore vanish.
Below we will need to define integrations over Grassmann variables. One of

the properties that we have with ordinary integrals over the full domain to obey
is this Z

dx f(x) =

Z
dx f(x+ c)

(we use this with Gaussian integrals whenever we complete the square). We
want the same to hold for Grassmann variables. In fact we can take that as the
definition of Grassmann integrals. We know what the most general function of
one variable is, so we plug it in and see:

Z
d f( ) =

Z
d f( +  0)

Where  0 is an arbitrary Grassmann number. The left hand side is f(0)+f 0(0) ,
while the right hand side is

R
d f(0)+f 0(0)( + 0). Equating these, we obtain
Z

d f 0(0) 0 = 0
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Since  0 is arbitray we have the rule
Z

d 1 = 0.

The product of two Grassmann variables commutes with any other Grass-
mann variables, since there are two minus signs involved. Thus we understand
the product of two Grassmann numbers as an ordinary number. Then

R
d  is

an ordinary number, which we define to be 1, which is a bit like a normalization
of Grassmann numbers: Z

d  = 1

How do Grassmann numbers behave when multiplied by a fermion operator?
Let’s take as an example the coherent state we want ajai| i =  j i| i, so:

ajai| i = aj( i| i) = �( iaj | i) = �( i j | i) = ( j i| i)

In the second equality we had to make a anticommute with  , otherwise would
have obtained the wrong sign. Thus fermion operators and Grassmanns anti-
commute.

In this way we have constructed a logically consistent mathematical system
and we can use it to build up our fermion coherent states. We construct similar
to before

| i = exp(
X

i

 ia
+
i
)|0i.

But for the ket we can’t just take the hermitian conjugate, since we don’t have
the notion of complex conjugation for Grassmann variables. They don’t have a
real and imaginary part. Thus we do something else instead, we introduce a ket
that is independent of the bra and contains a new set of Grassmann variables
that have a bar on top, but without the meaning that it’s complex conjugation:

h | = h0| exp(�
X

i

ai ̄i) = h0| exp(
X

i

 ̄iai)

With this we can state the completeness relation
Z

d( ̄, ) exp(�
X

i

 ̄i i)| ih | = ,

where
R
d( ̄, ) =

R Q
i
d ̄id i. Thus the only formal change here is the absence

of the factor ⇡ in the measure. Now one can go through the whole steps similar
to the ones we took for the bosonic states to prove the other useful facts about
coherent states. These relations are unchanged.

Thus we have enough information now to construct the field integral for the
partition function of fermions. Instead of repeating the steps, let us rather look
at where the crucial di↵erences are. The first step in our derivation was to insert
a resolution of identity into

Z = Tre��(H�µN) =
X

n

hn|e��(H�µN)
|ni,
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in order to get rid of the states |ni. Let’s do this:

Z =
X

n

hn|e��(H�µN)
|ni =

Z
d( ̄, ) exp(�

X

i

 ̄i i)
X

n

hn| ih |e��(H�µN)
|ni

One can prove that moving hn| i to the right changes the sign of the Grassmann
variables in one of the coherent states. Thus:

hn| ih |mi = h� |mihn| i

This leads to

Z =

Z
d( ̄, ) exp(�

X

i

 ̄i i)h� |e
��(H�µN)

| i

Now we can go through the same steps as before to derive the field integral
for fermions. We obtain the same result with one very important di↵erence:
because we start with h� |e��(H�µN)

| i,  has to come back to � after at
time ~�, i.e. the boundary condition on the field integral has changed:

Z =

Z

 (0)=� (�~)

D( ̄, )e�
1
~S[ ⇤

, ] (13)

with

S[ ⇤, ] =

�~Z

0

d⌧ [~ ⇤@⌧ +H( ⇤, )� µN( ⇤, ]

Thus in this field integral approach to physics the only di↵erence between bosons
and fermions is a minus sign in the boundary conditions of the field integral.
Bosons are periodic in imaginary time, while fermions are antiperiodic.
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