
Path integral

We have seen that in the study of quantum mechanical many-body systems it
is not so useful to write down the Schrödinger equation of N ⇠ 1023 particles
and attempt to solve it. No one has ever succeeded in solving the Schrödinger
equation for a realistic system. Even if we somehow managed to obtain such a
solution, the amount of detail that  (x1,x2, . . .xN ) contains would too much
for us to make sense of.

A successful approach to quantum mechanical many-body physics is to get
an understanding for the low energy degrees of freedom. For example in the
case of a fermionic system at low temperatures, we know that the system has
a Fermi surface and the low energy excitations are long-lived particle-hole pairs
near that surface. Similarly in systems of spins, there is usually an ordered
ground state and the low energy excitations are the spin waves on top of that.

It is possible to realize this paradigm, i.e. ground state + low energy ex-
citations, in the formalism of second quantization. However, this technique,
although useful, can be at times quite clumsy to work with. It is useful for a
theoretical physicist to have di↵erent mathematical tools to deal with the same
problem. The mathematical tool that we will learn here is the path integral
approach. This technique is related to second quantization and in particular
both ways of describing a physical many-body system are equivalent. This
means that anything that can be achieved by second quantization must also be
achievable by the path integral method and the other way around. Sometimes,
however, it is much easier to work out a problem one way than the other. So it
is useful to know both techniques.

Before we discuss the many-body problem, let us go back to the single-
particle problem. The path integral is most easily understood in this setting.
After we know how to do the single particle problem we will be ready to tackle
the many-body problem. The path integral is intimately connected to the con-
cept of action from classical mechanics. Let’s first review this concept.

Review of the action concept

Consider a classical particle of mass m that lives in one dimension and is subject
to a potential V (x). We can describe this problem by means of a Lagrangian,
which is the kinetic minus the potential energy,

L(x, ẋ) =
m

2
ẋ2

� V (x).

A striking and beautiful result is that the particle always moves such that it
minimizes the classical action. Let us imagine that the particle starts at position
xi at time ti and is at position xf at a later time tf . The action is a number
that we obtain by integrating the Lagrangian between the start and end times
for the actual curve x(t)

S =

tfZ

ti

dt L(x, ẋ).
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Figure 1: Left: Particle moving in 1 dimension inside a potential V (x) Right:
paths connecting start and end points

Actually, we could plug in any curve x(t) into the Lagrangian and evaluate the
action. The principle of least action states that this value will be least (actually
only extremal) when the true path of the particle is chosen. We can use the
calculus of variations to find the curve x(t) that makes the action stationary.
The result is of course the equation of motion of the particle

@L(x, ẋ)

@x
�

d

dt

@L(x, ẋ)

@ẋ
= 0,

which tells us how the particle actually moves from xi to xf in the given time.

The sum over all paths

Let us now look at the same setting in the quantum context. The Hamiltonian
is

H =
P 2

2m
+ V (X),

where P and X are now operators and the physics of the particle is governed
by the Schrödinger equation

H| i = i~ @
@t

| i.
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Figure 2: Spacetime diagram of the propagator

A particle that is localized at position xi is described quantum mechanically by
the ket | i = |xii. We can ask what is the probability amplitude to find it in
the state |xf i at a time tf � ti later. We get the answer by time-evolving the
state |xii and computing the overlap with |xf i. The answer is the probability
amplitude

K(xf , tf ;xi, ti) = hxf |e
� i

~H·(tf�ti)|xii,

where the object K is called the propagator sometimes, since it propagates a
wave function  (x, ti) at time ti to a wave function at time tf :

Z
dx0 K(x, tf ;x

0, ti) (x
0, ti) =  (x, tf )

Of course, this is not a big surprise, after all K(xf , tf ;xi, ti) is just the time-
evolution operator expressed in the x-basis. We draw a diagram for the prop-
agator as shown in the figure. A straight edge indicates the propagator K. Of
course this edge does not represent the particle’s trajectory (which is not defined
sharply), but rather it is to be understood as an abstract representation of the
probability amplitude K.

There is a composition law rule for this propagator, that we look at next.
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Figure 3: Composition rule for propagators

Imagine we pick a time t between ti and tf . Then we can write

K(xf , tf ;xi, ti) = hxf |e
� i

~H·(tf�t)e�
i
~H·(t�ti)|xii

=

Z
dx hxf |e

� i
~H·(tf�t)

|xihx|e�
i
~H·(t�ti)|xii

=

Z
dx K(xf , tf ;x, t)K(x, t;xi, ti),

where in the second line we used the resolution of identity =
R
dx |xihx| and in

the last line the result was rexpressed in terms of propagators. Let us interpret
the result. The propagator for the particle to travel from xi at ti to xf at tf is
the sum (integral) over the product of propagators with an intermediate point
x at time t. We can show this too in a diagram.

Imagine decomposing each of the two K 0s into two K 0s and introducing
more and more intermediate times. The result is shown in the figure. In the
limit of an infinite number of intermediate points, the broken lines become a
smooth curve and we end up with an integral over all curves connecting points
xi, ti and xf , tf . Notice that the number of integrals, which comes from putting
in resolutions of the identity, tends to infinity. This is what is called a path
integral, an integral over all curves connecting given points. In the next section
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Figure 4: One can introduce many intermediate times and integrate over the
corresponding positions

we find that the propagator can be expressed as

K(xf , tf ;xi, ti) ⇠
X

all paths x(t)

e
i
~S[x(t)],

where by ’all paths’ we mean all paths connecting the two boundary points. In
the exponential the action S has to be computed for every path that appears in
the sum. Clearly this sum is a new kind of mathematical object and when we
derive this result below, we will see how it has to be understood.

A nice feature of this result can be seen right away. A slight change in a
path x(t) ! x(t)+ �x(t) will result in a slight change in the action S ! S+ �S.
If the action is large compared to ~, which is the case if the mass of the particle
is macroscopic, then even for a small change �S, a large change in i

~S[x(t)]
will result. As a consequence the exponential oscillates very fast and all the
di↵erent paths that appear in the sum will cancel. However, for classical paths
�S = 0 , thus these paths will survive in the sum. In this way the classical laws
(equation of motion) emerge from the quantum laws. Clearly whether a system
behaves classically or quantum mechanically is governed by how the value of the
action compares to ~. Treating ~ like a small parameter, we will see below that
it is possible to develop a semiclassical approximation to quantum mechanics
through the path integral.
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Derivation of the path integral

The composition rule for the propagator allows us to work out the propagator for
an infinitesimal time �t = tf�ti

N
and to later combine N such tiny propagators

to get the full propagator. Therefore we consider

K(x0, t+�t;x, t) = hx0
|e�

i
~H·�t

|xi

and expand the exponential for small �t:

hx0
|e�

i
~H·�t

|xi = hx0
|


1�

i

~H ·�t+O(�t)2
�
|xi = hx0

|


1�

i

~ [
P 2

2m
+ V (X)] ·�t+O(�t)2

�
|xi.

Here P andX are of course operators. However, when V (X) acts on the position
ket to the right it will become V (x) and the operator turns into a regular number.
We can do the same to the kinetic energy term when we insert the resolution of
identity in the momentum basis =

R
dp |pihp|:

hx0
|e�

i
~H·�t

|xi =

Z
dp hx0

|pihp|


1�

i

~ [
P 2

2m
+ V (X)] ·�t+O(�t)2

�
|xi

=

Z
dp hx0

|pihp|xi


1�

i

~ [
p2

2m
+ V (x)] ·�t+O(�t)2

�

=

Z
dp hx0

|pihp|xi exp

✓
�
i

~ [
p2

2m
+ V (x)] ·�t

◆
(1)

In the last line we rexponentiated, which is allowed since �t can be made
arbitrarily small. Now we use that |pi is a normalzied plane wave state, i.e.
hx|pi = eipx/~/

p
2⇡~. This brings the propagator into the form

K(x0, t+�t;x, t) =

Z
dp

eip(x
0�x)/~

2⇡~ exp

✓
�
i

~ [
p2

2m
+ V (x)] ·�t

◆
.

The integral over p is Gaussian and can be carried out, we find:

K(x0, t+�t;x, t) =

r
m

2⇡i~�t
exp

✓
�

m

2i~
(x0

� x)2

�t

◆
[exp

✓
�
i

~ [V (x)] ·�t

◆

=

r
m

2⇡i~�t
exp

i�t

~

✓
m

2

(x0
� x)2

�t2
� V (x)

◆
.

This is the form of the propagator for infinitesimal times �t.
Now we can decompose the full propagator by splitting the time between tf

and ti into N parts of size �t = (tf � ti)/N :

K(xf , tf ;xi, ti) =

Z
dxN�1 . . . dx1K(xf , tf ;xN�1, tN�1)K(xN�1, tN�1;xN�2, tN�2) . . .K(x1, t1;xi, ti)

Notice the following peculiarity. The number of integrals is N � 1 and we will
let N ! 1, i.e. we have to do an infinite number of integrations.
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In the limit where N is large, �t is small and we can express the K’s on the
right hand side in terms of the infinitesimal time propagator (1). Inserting the
result that we found for the latter, we get:

K(xf , tf ;xi, ti) =

Z
dxN�1 . . . dx1

r
m

2⇡i~�t

�N
exp

i�t

~

N�1X

i=0

✓
m

2

(xi+1 � xi)2

�t2
� V (xi)

◆
,

where we have put

x0 = xi

t0 = ti

xN = xf

tN = tf .

Let us now look more closely at what stands inside the exponential. In the limit
of N ! 1, i.e. an infinite subdivision of the time interval, the sum corresponds
to the definition of the Riemann integral:

i�t

~

NX

i=0

✓
m

2

(xi+1 � xi)2

�t2
� V (xi)

◆
!

i

~

Z
dt

hm
2
ẋ2

� V (x)
i
,

Quite amazingly we see that the action familiar to us from classical mechanics
appears here.

Figure 5: The zig-zag lines go over into paths as N ! 1

In the limit of N ! 1 the jagged, zig-zag lines become continuous curves,
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see figure. We write the propagator as

K(xf , tf ;xi, ti) =

Z

x(ti)=xi

x(tf )=xf

Dx(t) e
i
~S[x(t)],

the di↵erential sign under the integral stands for an infinite number of integrals:

Z
Dx(t) = lim

N!1

r
m

2⇡i~�t

�N Z
dxN�1 . . . dx1

The mathematician would not be very happy with such a definition. But the
path integral has been shown to be an incredibly useful and a fully valid tool
in the exploration of physical systems. The only way to get comfortable with
this strange mathematical object is to practise it on many example problems
and convince oneself that the answers obtained from quantum mechanics are
the same as those obtained with the path integral.

0+1 and 1+1 dimensional field theories

We have managed to write the single particle problem in terms of a path integral
of x(t). It turns out that this is a so-called 0 + 1 dimensional field theory.
Here 0 refers to the number of spatial dimensions and 1 to the number of time
dimensions. This may seem strange at first sight, since we have thought of x(t)
as a spatial coordinate. But this is just a question of interpretation. We may
just as well imagine that we have a scalar field � (like the the potential for an
electric field) at one single position in space and dependent on time t. Then we
would describe it by the same kind of path integral

R
D�(t)eiS[�]/~ with some

action for the scalar field.
Similarly, imagine that we start out with a path integral of N particles,

described by coordinates xi(t) with i = 1 . . . N . Then in the limit N ! 1 we
can also interprete this path integral as a 1 + 1 dimensional field theory. We
just have to introduce a scalar field � that is defined on a line with coordinates
x = ia, where a is a lattice size. Then the field � depends on two dimensions x
and t: �(x, t).

Connection of the path integral to statistical physics

One of the central themes of condensed matter physics are the equilibrium
properties of many-body systems. The subject that deals with these questions
is statistical physics. In statistical physics the central object is the partition
function, denoted by Z. If we know the Z for a physical system, we know all
of its equilibrium properties. In the statistical physics of quantum systems we
start with a Hamiltonian, as for example our simple

H =
P 2

2m
+ V (X)
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and we find Z by computing a trace:

Z = Tr[e��H ] =
X

n

hn|e��H
|ni,

here the sum has to be extended over a complete set of states, say the energy
eigenstates of H. Now we ask: how is this sum connected to path integrals?
Instead of using energy eigenstates |ni, let us switch to position eigenstates, by
using

R
dx|xihx|:

Z =

Z
dx

X

n

hn|xihx|e��H
|ni =

Z
dx

X

n

hx|e��H
|nihn|xi =

Z
dxhx|e��H

|xi

This looks familiar, in fact the summand is reminiscent of a probability ampli-
tude, except that instead of �iH · (tf � ti)/~ in the exponent, we have ��H
and also xf = xi = x. Let us take our result

hx0|e
�iHT/~

|x0i =

Z

x(0)=x0

x(T )=x0

Dx(t) e
i
~

TR

0
dt[m2 ẋ

2�V (x)]
,

where ti = 0, tf = T and make the substitutions

T = �i�~
t = �i⌧

then we get

hx0|e
��H

|x0i =

Z

x(0)=x0

x(T )=x0

Dx(t) e
� 1

~
�~R

0
d⌧[m2 ẋ

2+V (x)]
.

Surprisingly the i in going from t to ⌧ has changed the sign of the kinetic
energy, such that in the exponent we have now the Hamiltonian and not the
Lagrangian. Finally, in order to obtain the partition function we integrate over
x0. This changes the path integration such that in the boundary conditions x0

can be anything, as long as x(t) is periodic:

Z =

Z

x(0)=x(T )

Dx(t) e
� 1

~
�~R

0
d⌧[m2 ẋ

2+V (x)]

The free particle

So far we have derived path integrals, but we haven’t evaluated any of them.
Let us evaluate the easiest, non-trivial path integral we can think of. We get
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Figure 6: A variable xi (except for x0 ind xN ) is connected to its two neighbors
xi�1 and xi+1. After integrating over xi, xi�1 and xi+1 become connected.

this by putting V (x) = 0, i.e. we want to calculate the free particle propagator

K(xf , T, xi, 0) =

Z

x(0)=xi

x(T )=xf

Dx(t)e
i
~

TR

0
dt

m
2 ẋ

2

.

It is useful to go back to the discretized definition of the path integral

K(xf , T, xi, 0) = lim
N!1

⇣ m

2⇡i~�t

⌘N/2
Z

dx1· · ·

Z
dxN exp(

im

2~�t

N�1X

i=0

(xi+1�xi)
2),

where just as before we have as endpoints x0 = xi, xN = xf and �t =
T/N . This is a somewhat tricky integral, in that each integration involves
two Gaussian factors, e.g. the integral over x1 involves exp( im

2~�t
(x1 � x0)2) ⇥

exp( im

2~�t
(x2 � x1)2). A neat way of doing this can be found in the excellent

book of Feynman and Hibbs. This way is based on the integral identity

1Z

�1

dxe�a(x�x
0)2�b(x00�x)2 =

r
⇡

a+ b
exp

✓
�
(x0

� x00)2

1
a
+ 1

b

◆
.

Let us begin by taking up first the x1 integration:

⇣ m

2⇡i~�t

⌘2/2
Z

dx1 exp(
im

2~�t
(x1 � x0)

2)⇥ exp(
im

2~�t
(x2 � x1)

2)

Here we used up two factors of
�

m

2⇡i~�t

�1/2
from the definition. The result of

integrating over x1 is

⇣ m

2⇡i~ 2�t

⌘1/2
exp(

im

2~ 2�t
(x2 � x0)

2).

This looks just like one of the factors we started with, except that everywhere�t
has now been replaced with 2�t. Also x1 has been removed from the sequence
shown in the figure and x2 is now linked directly to x0.
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We continue with the integrations. Next up is the integral over the Gaussians

involving x2. We also take one factor of
�

m

2⇡i~�t

�1/2
from the definition:

⇣ m

2⇡i~�t

⌘1/2 ⇣ m

2⇡i~ 2�t

⌘1/2
exp(

im

2~ 2�t
(x2 � x0)

2)⇥ exp(
im

2~ �t
(x2 � x3)

2)

The result of this is:

⇣ m

2⇡i~ 3�t

⌘1/2
exp(

im

2~ 3�t
(x3 � x0)

2)

In the place of �t we find 3�t and the Gaussian connects x3 to x0.
Since we are already seeing the rule behind these integrations, we can now

proceed recursively. After carrying out the last integration, the one over xN�1,
we are left with

K(xf , T, xi, 0) =
⇣ m

2⇡i~ N�t

⌘1/2
exp(

im

2~ N�t
(xN�x0)

2) =
⇣ m

2⇡i~ T

⌘1/2
exp(

im

2~ T
(xf�xi)

2).

This is the final answer for the propagator. This is indeed the familiar result
from doing ordinary quantum mechanics and is a good check that the path inte-
gral formalism does indeed work as expected and that furthermore the strange

looking factors limN!1
�

m

2⇡i~�t

�N/2
are in fact needed.

Gaussian integrals and Wick’s theorem

In working with path integrals the most important class of Lagrangians are
quadratic ones, since the corresponding path integrals can be computed exactly.
The underlying reason for this is that such path integrals are Gaussian. By
starting with the simplest Gaussian integral and successively generalizing we
end up with Gaussian path integrals.

Let us begin with the simplest Gaussian integral

+1Z

�1

dx e�
1
2ax

2

=

r
2⇡

a

which is a result that holds whenever Re a > 0. A slightly more di�cult one is,
if there is also a linear term in the exponent:

Z[J ] =

+1Z

�1

dx e�
1
2ax

2+Jx

We can relate it to the previous version by completing the square:

Z[J ] =

+1Z

�1

dx e�
1
2a(x�J/a)2e

J2

2a =

r
2⇡

a
e

1
2Ja

�1
J (2)
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The reason why we write the exponent in the result in this strange way, will
become clearer now. Let us define averages by:

h. . . i =

+1R
�1

dx (. . . ) e�
1
2ax

2+Jx

Z[J ]

����
J!0

(3)

The denominator is just there to normalize and we can calculate it rightaway:
+1R
�1

dx e�
1
2ax

2+Jx

����
J!0

=
q

2⇡
a
.

The numerator is somewhat trickier. As an example, let us calculate hx2
i.

We need to find
+1Z

�1

dx x2e�
1
2ax

2+Jx.

This can be done in many ways, but a particularly elegant way is to use deriva-
tives with respect to J :

+1Z

�1

dx x2e�
1
2ax

2+Jx

����
J!0

= @2
J

+1Z

�1

dx e�
1
2ax

2+Jx

����
J!0

=

r
2⇡

a
@2
J
e

1
2Ja

�1
J

����
J!0

The square root factor is not important, since it will eventually be cancelled

by the denominator in (3). In @2
J
e

1
2Ja

�1
J

����
J!0

it is useful to note that we set

J = 0 after taking the derivative, thus terms with factors of J will vanish in
the end. One di↵erentiation brings down a J and the next di↵erentiation has to
annihilate it, or else it won’t make a contribution. There are two ways to bring
down a J for the first @J , since there are two J ’s in e

1
2Ja

�1
J . This cancels the

factor of 1/2. In the end we are left with the simple result:

hx2
i = a�1

Let us try to do the same for hx4
i. This gives

hx4
i = @4

J
e

1
2Ja

�1
J

����
J!0

.

Again, each @J acting on the exponential brings down a J and since we are
taking the J ! 0 limit, this will only work if two @J bring down J ’s and two
@J annihilate them. Which of the @J annihilates which J does not matter, as
long as there is one @J that generates a J and there is another @J to annihilate
it. There is schematic way to count in how many ways this can be done. We
write hxxxxi and pair up two x’s as illustrated in the figure. This corresponds
to saying which @J generates a J and which @J annihilates it. We see from
the figure that there are 3 distinct ways. In general if one has hx2m

i there are
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Figure 7: Three distinct ways to pair up each of the four x’s

(2m)!
2mm! = (2m� 1) · (2m� 3) · · · · 1 ways (can you prove this?). Thus the general
result is

hx2m
i = (2m� 1) · (2m� 3) · · · · 1

�
a�1

�m
.

Notice what we did: By introducing the term Jx into the exponential of the
Gaussian, we found an elegant way to compute expectation values by taking
derivatives of Z[J ]. The variable J is called the source and by di↵erentiating
with respect to it, we can compute averages of powers of x.

Let us now generalize this integral to a slightly more di�cult one, where we
now integrate over x1, . . . , xN :

+1Z

�1

dx1 . . . dxN e�
1
2~x

T
A~x =

+1Z

�1

dx1 . . . dxN e�
1
2xiAijxj (4)

Here A is a matrix and in the second equality we have written the exponent
out using index notation. We use the summation convention, i.e. we sum over
repeated indices. We can assume without loss of generality that A is symmetric.
The reason is that we are summing over xi and xj , which would eliminate the
antisymmetric part of A anyway.

But if A is symmetric, we can diagonalize it using an orthogonal transfor-
mation O:

A = OTDO (5)
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Here D is a diagonal matrix. Let us insert this form into the exponent in (4):

�
1

2
~xTA~x = �

1

2
~xTOTDO~x = �

1

2
(O~x)T D (O~x)

We used that (O~x)T = ~xTOT . Now we can change to new variables ~y = O~x in
the integration. This gives us the integral

I =

+1Z

�1

dy1 . . . dyN e�
1
2~y

T
D~y =

+1Z

�1

dy1 . . . dyN e�
1
2

P
i Diiy

2
i .

In the last step we used the fact that D is diagonal. If all Dii > 0 we can do
this integral (else we get a diverging integral). The integrals are decoupled and
we can do each of them seperately:

I =
NY

i=1

r
2⇡

Di

=
(2⇡)N/2

p
D11 . . . DNN

=
(2⇡)N/2

p
detD

=
(2⇡)N/2

p
detA

In the penultimate step we used the fact that the determinant of D is equal
to product of its diagonal entries. In the last step we used the fact that a
similarity transformation like (5) does not change the determinant. Finally, in
going from variables x to y there would be a Jacobian, but this is 1 (here is
another exercise).

In order to make this result useful for us we introduce a source term ~J · ~x
into the exponent as before:

Z[J ] =

+1Z

�1

dx1 . . . dxN e�
1
2~x

T
A~x+ ~J·~x

We could derive this integral by going through the same steps as before, but it
is just as easy to guess the result by looking at the 1D result (2):

Z[J ] =

+1Z

�1

dx1 . . . dxN e�
1
2~x

T
A~x+ ~J·~x =

(2⇡)N/2

p
detA

e
1
2
~J
T
A

�1 ~J (6)

This is our final result. We can use it to compute Gaussian averages that we
define by

h. . . i =

+1R
�1

dx1 . . . dxN (. . . )e�
1
2~x

T
A~x+ ~J·~x

Z[J ]

����
J!0

.

Notice once again that the denominator is just there to cancel the factor (2⇡)N/2

p
detA

in (6). Let us begin with the average

hxixji.
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Figure 8: Wick pairings in vector version

We obtain it from (6) by di↵erentiating:

hxixji = @Ji@Jje
1
2
~J
T
A

�1 ~J

����
J!0

=
�
A�1

�
ij

Again, since we are taking the J ! 0 limit, one operator @j brings down a
~J , the other annihilates it. You should try it yourself by carrying out the two
di↵erentiations and putting ~J = 0 in the end. Similarly we can look at

hxixjxkxli

and apply four derivatives:

@Ji@Jj@Jk@Jle
1
2
~J
T
A

�1 ~J

����
J!0

The end result is:

hxixjxkxli = (A�1)ij(A
�1)kl + (A�1)ik(A

�1)jl + (A�1)il(A
�1)jk

The general pattern is quite clear now. In order to compute

hxi1xi2 . . . xi2mi

we just pair up (people say ’contract’) the x’s in all possible ways and for each
pairup of index ia with ib we write the factor (A�1)iaib :

hxi1xi2 . . . xi2mi =
X

all pairings

(A�1)ab . . . (A
�1)cd

This identity is called Wick’s theorem and here it is shown in the special setting
of Gaussian multiple integrals.

Now we can take up our final generalization to path integrals. A function
�(x) can be be discretized at certain points along the x-axis at points x = ia,
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where a is a lattice constant and i = 0,±1,±2, . . . . Then at each one of these
points in space the function takes on a value �i := �(x = ia). Thus a function
can be viewed as a vector with infinitely many components �i. If we make
take a progressively smaller, we obtain an ever more accurate description of
the function �(x). The continuum analogue of

P
i
�i i is then

R
dx �(x) (x).

Similarly, if one has a matrix A, then the continuum analogue of the expressionP
ij
�iAij j is given by

R
dx

R
dy �(x)A(x, y) (y).

Then how does one define the continuum inverse of A(x, y)? The inverse of
a matrix is defined by X

j

Aij(A
�1)jk = �ik

and therefore the continuum inverse of A(x, y) is defined by

Z
dy A(x, y)A�1(y, z) = �(x� z).

Now let us look at Gaussian integral with functions instead of vectors. By
analogy with the identity in equation (6), we consider

Z[J ] =

Z
Dx exp

✓
�
1

2

Z
dt

Z
dt0 x(t)A(t, t0)x(t0) +

Z
dt J(t)x(t)

◆
, (7)

where we have decided to call the field x and to use as the ’component index’
the symbols t and t0. This is intentional so we can recognize this integral as a
path integral. The identity (6) also suggest the result for this integral. It is:

Z[J ] ⇠
1

p
detA

Z
Dx exp

✓
1

2

Z
dt

Z
dt0 J(t)A�1(t, t0)J(t0)

◆
(8)

We have dropped the constant (2⇡)N , which would diverge in our case. But
since we will use this formula only to compute averages , the constant will
not matter. Since A is an operator here, it is not immediately clear how the
determinant is computed. We shall next demonstrate on a standard example
how this is done.

Semiclassical approximation

We take the problem of a particle moving in one dimension in a potential as
shown in the figure. The minimum of V is at x = 0 and V (x = 0) = 0. We
want to compute the amplitude

h0| exp(�iHT/~)|0i =
Z

Dx(t) exp(
i

~

TZ

0

dt
hm
2
ẋ2

� V (x)
i
).

If V is some general potential we will not be able to compute the result ex-
actly. Thus we resort to an approximation that is know as the semiclassical
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Figure 9: Potential of a 1D particle

approximation. In this approximation one assumes that the most dominant
contribution to the path integral on the right hand side is the classical solution
of the problem xcl(t) plus a little bit of fluctuations ⌘(t):

x(t) = xcl(t) + ⌘(t)

Inserting this into the action and expanding for small ⌘, we obtain

S[x] =

TZ

0

dt


m

2
ẋ2
cl � V (xcl) +

m

2
⌘̇2 �

1

2

@2V

@x2
⌘2
�
,

where @
2
V

@x2 has to be evaluated at xcl. Notice that we have dropped all the
linear parts in xcl. The reason is that this part is exactly zero, since the classical
solution has the property that �S[xcl ] = 0 .

Inside the brackets we recognize the first two terms as the classical La-
grangian, thus we write

S[x] = Scl +

TZ

0

dt


m

2
⌘̇2 �

1

2

@2V

@x2
⌘2
�
.

So far everything is general and it is clear that we can always compute the
resulting path integral, since the problem is quadratic in ⌘.

We specialize now to our potential. We first have to find the classical solu-
tions (there will in general be many) subject to the condition that the particle
starts at x = 0 and returns to x = 0 at time T . There are many classical solu-
tions that we can include, but the most important is xcl = 0. In this case the
classical action is Scl = 0. Also, in order to make the action of the ⌘ part look
like a harmonic oscillator, we set @

2
V

@x2 = m!2. This results in the approximation
for the amplitude:

h0| exp(�iHT/~)|0i =
Z

D⌘(t) exp(
i

~

TZ

0

dt


m

2
⌘̇2 �

m!2

2
⌘2
�
).
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We recognize this as the path integral (7) with J = 0. However, we first have
to bring the quadratic part into the same form, which we can do by partially
integrating the first term:

S[x] =
m

2

TZ

0

dt
⇥
⌘̇2 � !2⌘2

⇤
= �

m

2

TZ

0

dt

Z
dt0 ⌘(t0)�(t� t0)

⇥
@2
t
+ !2

⇤
⌘(t)

To bring it completely into the same form we have also introduced an integral
over t0 and multiplied the integrand with a �(t-t’), but it turns out that this
only clutters up the calculation and later on, when we are more familiar with
functional determinants, we will not be so careful anymore. We now read o↵
that

A(t, t0) = m�(t� t0)
⇥
@2
t
+ !2

⇤

and the result for the path integral is

Z[J = 0] ⇠
1p

det[A]
.

How do we calculate this determinant? We make use of the fact about determi-
nants that they are equal to the product of eigenvalues. Thus we have to study
the eigenvalues of A, i.e. we look for solutions of

m
⇥
@2
t
+ !2

⇤
 = � . (9)

But we have to keep in mind that there are boundary conditions to the path
integral. Since x(T ) = x(0) we have ⌘(T ) = ⌘(0). The solutions to (9) are given
by

 (t) = sin
⇣n⇡
T

t
⌘

with n = 1, 2 . . . . The eigenvalues are obtained by substituting back into the
di↵erential equation:

� = m

✓
n2⇡2

T 2
� !2

◆
.

The determinant is the product of these eigenvalues, thus

detA =
1Y

n=1


m

✓
n2⇡2

T 2
� !2

◆�
.

This looks like a horribly divergent result. But we remember that our result (8)
was left unspecified up to a constant, which was infinitely large. We can guess
that this is what will cancel the divergence here. In order to find the result, we
proceed as follows. There is one result for the path integral that we have worked
out carefully and that we know is right. It is the result for the free problem,
which gave h0| exp(�iHT/~)|0i =

p
m

2⇡i~T . Our current problem reduces to the

18



free problem, when we set ! = 0 (this is the same as having V = 0 everywhere).
Thus we are saying

h0| exp(�iHT/~)|0i = h0| exp(�iHT/~)|0i
h0| exp(�iHT/~)|0ifree

r
m

2⇡i~T

=
1Y

n=1


m

✓
n2⇡2

T 2
� !2

◆��1/2 1Y

n=1


m

✓
n2⇡2

T 2

◆�1/2 r
m

2⇡i~T

=
1Y

n=1

✓
1�

T 2!2

n2⇡2

◆��1/2 r
m

2⇡i~T

Now we can use a product formula that is due to L. Euler, who found it in
working on the so-called Basel problem (1735):

sin(x) = x
1Y

n=1

✓
1�

x2

⇡2n2

◆

We thus obtain the final result:

h0| exp(�iHT/~)|0i =

sin!T

!T

��1/2 r m

2⇡i~T =

r
m!

2⇡i~ sin!T

In the limit ! ! 0 we see that result reduces to the free problem. In the case,
where the V (x) is quadratic, this is an exact result. For other V ’s this is of
course only an approximation.

Many-body physics using the field integral

The view of quantum field theory is that each particle type has an underlying
field, which can be disturbed to produce an excitation that we recognize as a
particle. If we excite the electromagnetic field we produce a particle called the
photon. An example from condensed matter physics, is the concept of lattice
vibrations. Since the underlying stu↵ that is moving are the particles making up
the lattice, and since those are described by quantum mechanics, the vibrations
themselves are quantized. The corresponding field is called the phonon field
and the excitations are called phonons. For the purposes of condensed matter
physics these quasiparticles are just as real as elementary particles.

We have seen how quantum many-body problem can be formulated in the
language of second quantization. For example, the quantum many-body prob-
lem of fermions interacting with each other is described by

H =
X

k

k2

2m
a+k�ak� +

X

k,k0,q

e2

q2
a+k�q�a

+
k0+q�0ak0�0ak�.

Our task in this section is to find a formulation of this problem in terms of
something like a path integral, which is called the field integral. The di↵erence to
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