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Projects marked with star are a bit more elaborate. Projects are assigned on a first come
first serve basis.

Project 1: N-state Potts model (Monte Carlo)

Implement the Metropolis algorithm for the N -state Potts model in 2D and observe/dis-
cuss the behaviour of the phase transition for different N . The N -state Potts model
is a generalization of the Ising model, where each si takes N possible values, and the
Hamiltonian is given by H = −J

∑
〈i,j〉 δsi,sj , where 〈i, j〉 denotes nearest neighbours and

δsi,sj the Kronecker-delta.

Project 2: Criticality of the (classical) 3D Ising model (Monte
Carlo)

Generalize the Swendsen-Wang algorithm to the (classical) Ising model on a 3D cubic
lattice and perform a finite size scaling analysis to obtain the critical exponents.

Project 3*: The worm algorithm for the 6-vertex model (Monte
Carlo)

Implement the worm algorithm for the 6-vertex model (https://en.wikipedia.org/
wiki/Ice-type_model) at T = ∞ (where all allowed configurations are equally likely).
Calculate the exponente a of the correlation function 〈s0sr〉 ∝ 1

ra
.

Project 4: Ground state properties of the 2D (transverse field)
Ising model with Conservation laws (Exact Diagonalization)

Generalize (the code of) exercise 5 to the transverse field Ising model in 2 spatial dimen-
sions, use both kx and ky as quantum numbers. Find the ground state (and possibly a
few excited states) to locate the quantum phase transition.

Project 5: Krylov time evolution in a random Heisenberg chain
(Exact Diagonalization)

In exercise 6 we used the Lanczos algorithm to find the ground state of H projected into
the Krylov subspace and transformed it back to the full Hilbert space to find a good
approximation of the ground state in the full Hilbert space. In a similar fashion, one can
do a time evolution in the Krylov subspace to get an approximation of the time evolution
in the full Hilbert space (https://www.jstor.org/stable/2158085). Use this method
to perform the time evolution of a product state (e.g. |↑↓↑↓ . . .〉) for the Heisenberg
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model with a random field, H = J
∑

i
~Si · ~Si+1 −

∑
i hiS

z
i , where the values of the field

hi ∈ [−W,W ] are chosen from a uniform random distribution with a “disorder strength”
W . Plot the growth of the entanglement entropy S(t) for small W = 0.5J and for large
W = 5J .

Project 6: Construction of the reduced density matrix (MPS)

Use DMRG to calculate the ground state |ψ〉 of the transverse field Ising model for a large
system (L ≈ 100) as an MPS. Find a method to construct the reduced density matrix of
n sites (n . 10) in the center. Measure the entanglement entropy of this subsystem of n
sites for the different n.

Project 7*: Purification (MPS)

Purification (see e.g. the review by Schollwoeck) is a method to represent mixed states
with MPS, which can be used to calculate thermodynamic properties from ρ = e−βH .
Calculate the energy, specific heat and magnetization as a function of temperature for
the transverse field Ising model.

Project 8: Dynamical correlation functions (MPS)

Use the TEBD and DMRG to calculate correlation functions of the form 〈ψ0| eiHtS+
i e
−iHtS−j |ψ0〉,

where |ψ0〉 is the ground state of the transverse field Ising model. Perform a fourier trans-
formation in space and time and compare your results to the results of exercise 5.

Project 9*: DMRG for fermions (MPS)

Make use of the Jordan-Wigner transformation to write the Fermi-Hubbard Hamiltonain
H = −t

∑
i,σ(c†i,σci+1,σ + h.c.) − U

∑
i ni,↑ni,↓ with fermionic creation operatos c†i,σ and

ni = c†ici,σ as an MPO. Use DMRG to find the ground state at half filling (i.e. for
N = L particles, where L is the number of sites, i = 0, . . . L−1) and calculate correlation

functions 〈c†iσcjσ̃〉 for different interaction strengths U . Some explanations: https://

tenpy.github.io/intro_JordanWigner.html.

Project 10: Phase diagram of the 1D Bose-Hubbard model (MPS)

Use DMRG to find the ground states of the interacting 1D Bose-Hubbard model H =
−t

∑
i(a
†
iai+1 + h.c.) + U

2

∑
i ni(ni − 1) − µ

∑
i ni for different choices of the parameters

t, U, µ. Note that you need to cut off the maximum number of bosons on each site to
nc = 1, 2, 3, . . . . Calculate the correlation function of superfluid order 〈a†iai+r〉 and the
density 〈ni〉 and use them to determine the ground state phase diagram. Compare the
influence of different cutoffs nc on the result.
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Project 11: Correlations and entanglement in the Heisenberg
critical point (MPS)

Use DMRG to find the ground state of the Heisenberg model H = J
∑

i
~Si·~Si+1. Calculate

spin-spin correlations. Use the scaling of the half-chain entanglement entropy with system
size L to extract the central charge c from S(L) = c

6
log(L) valid for large L.

Project 12: Heisenberg model with short and exponential decay-
ing interactions (MPS)

There is a natural way to write down matrix product operators for interactions which

decay exponentially in distance, here we considerH =
∑

i

∑
j>i Je

− |i−j|
ξ ~Si·~Sj. Use DMRG

to find the ground state. Find out which influence ξ has on the correlations 〈Szi Szj 〉.

Project 13*: Stochastic Series Expansion for a bond alternating
Heisenberg model (Quantum Monte Carlo)

ff
ff

ff
ff

ff
ff

ff
ff

J ′

J = 1

Generalize the code of the stochastic series expansion of the Heisenberg
model to work with couplings strength J and J ′ for different bonds,
of the pattern shown in the figure to the right. Calculate the energy,
specific heat and staggered magnetization as a function of temperature
for different values of 0 ≤ J ′ ≤ 1 and fixed J ≡ 1.
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