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Exercise 11.1: Playing with a neuronal network vizualization

Open the website https://playground.tensorflow.org/, which visualizes the training
of a neuronal network. In this case, the network is trained to learn a function f(x, y) which
is specified only by a set of data points (being blue or orange) at various x, y positions,
plotted as the dots in the output graph. Vary the number of layers, the number of neurons
per layer and the input data set and observe how this affects the training. What is the
best layout if you fix the number of neurons?

Exercise 12.1: Neuronal Network training

Download the python files1 network.py, load_data.py and the MNIST data set mnist.tar.gz

provided on the course website.

a) The MNIST data set contains (a lot of) images of hand-written digits, along with la-
bels 0-9 of the shown number. Load the data set with the function load_data_wrapper

of load_data.py and plot a few of the images.

Hint: Throughout this exercise, we don’t need the validataion_data returned by the
function. The test_data is a list of tuples (image, label). To plot an image, reshape
it to 28× 28 pixels and use the imgshow function of Matplotlib.

b) Read the code of network.py.

c) The Network class of network.py lacks an implementation of the backpropagation
algorithm in backprop(self, x, y). Implement it!

Note: You can find working code in the online book by Nielsen. However, the point
of this exercise is to try the implementation yourself!

Hints: The goal is to calculate the gradient of the cost function C = 1
2
‖aL − y‖2

with respect to each entry of the weights wl (matrices) and biases bl (vectors) in
each layer l. Here, x (vector) is the input to image for the network, y (vector) the
desired output, and aL (vector) is the activation of the neurons in the last layer L
for the given input x. In this code, vectors (including the input images) are numpy
arrays shaped as column vectors (len, 1).

• Begin with a code similar as in Network.feedforward to calculate the weighted
input zl and activations al for each layer l = 1, . . . , L, using the definitions

al = σ(zl), zl = wlal−1 + bl (1)

starting with a0 = x. Here, σ(z) labels the sigmoid function as defined in
network.py.

1 The provided code is based on (code from) the (free) online-book Neural networks and deep learning by
M. Nielsen, http://neuralnetworksanddeeplearning.com.
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• Calculate

δL ≡ ∂C

∂zL
=
∂ 1

2
‖σ(zL)− y‖2

∂zL
= (aL − y) ∗ σ′(zL), (2)

where ∗ labels the element-wise product (as performed by the * between two
numpy arrays) and σ′(z) is the derivative of the sigmoid function. This is the
only point which depends on the exact form of the used cost-function C. For
this reason, there is a (trivial) function self.cost_derivative defined, which you
can use to calculate (aL − y).

Using the definitions eq. (1), the chain rule implies for l = L− 1, . . . , 1:

δl ≡ ∂C

∂zl
=

∂C

∂zl+1︸ ︷︷ ︸
δl+1

∂zl+1

∂al︸ ︷︷ ︸
(wl+1)T

∂al

∂zl︸︷︷︸
σ′(zl)

=
(
(wl+1)T δl+1

)
∗ σ′(zl). (3)

Here, (wl+1)T denotes the usual matrix transpose, the need of which becomes clear
when considering elements of the above vector equation. Moreover, we have:

∂C

∂bl
=
∂C

∂zl︸︷︷︸
δl

∂zl

∂bl︸︷︷︸
1

= δl (4)

∂C

∂wl
=
∂C

∂zl︸︷︷︸
δl

∂zl

∂wl︸︷︷︸
(al−1)T

= δl × (al−1)T (5)

The last product of eq. (5) is to be read as a matrix-product column-vector ×
row-vector to yield a matrix.

• Use eq. (3), to back-propagate the δl from the last layer l = L to the first
(hidden) layer l = 1 and calculate the gradients using eqs. (4),(5).

d) Train a network Network([784, 30, 10]) with a single hidden layer. What accuaracy
do you achieve?

Hint: If you implemented the backpropagation correctly, you should get accuracies
of up to ≈ 94%!

e) Train other networks with more hidden layers and/or more neurons and try to
increase the final accuracy.

So far we have trained a neuronal network to classify images of digits. Can we use such a
setup in physics? One idea2 is to train a network to classify different phases. The provided
file generate_mc_data.py runs a Monte-Carlo simulation of the classical Ising model (using
the code we wrote in earlier exercises) and saves snapshots of the spin configurations
during the simulation at 3 different temperaturs T = 1.5, 2.3, 3.

f) Run the file generate_mc_data.py to generate the data file mcIsing.tar.gz (which may
take a few minutes). This file uses the same format as the MNIST data set (except
that is uses only 3 different labels).

2 See for example the paper by J. Carrasquilla and R. Melko, https://arxiv.org/abs/1605.01735.
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g) Load the data (with the same function as for the MNIST data set) and plot a few
of the images. Can you assign the temperatures to the labels?

h) Train a neural network with a single layer of 30 hidden neurons to classify the digits.
What accuracy can you achieve? Try again with a deeper network (i.e., more layers)
using the same number of neurons as before. What accuracy can you achieve now?
Would a perfect neural network be able to classify 100% of the snapshots correctly?

Hint: You need to adjust the number of output neurons to the number of temper-
ature values, here 3.
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