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Exercise 10.1: TEBD for infinite MPS and Transfer Matrix

This exercise uses the provided files a_mps.py,b_model.py,c_tebd.py,tfi_exact.py from last
week1. As discussed in the lecture, one can adjust TEBD to work directly on infinite,
translation invariant systems with a unit cell of a few sites; L labels now the number of
sites in the unit cell.

a) Make the necessary adjustments to the provided MPS and TEBD code such that it
works for an infinite system.

Hint: You can either make the adjustments in the files directly, or (more elegantly)
define classes derived from the existing ones, only overwriting the methods which
need to be changed (and for c_tebd.py define new functions to replace the previous
ones).

• Where we act on two sites i and j = i+ 1, we should take the j = i+ 1 modulo
L to enforce the periodic structure.
(a_mps.MPS.get_theta2, c_tebd.update_bond)

• The MPS has now L instead of L− 1 bonds.
(a_mps.MPS.get_chi, bond_expectation_value, entanglement_entropy)

• Similarly, we have to adjust TFIModel.init_H_bonds to generate L terms.

• Since the energy is extensive, we are interested in the energy density and should
calculate the energy per site.
(TFIModel.energy)

b) Run imaginary time evolution (as was done for the finite case) to find the ground
state of the infinite system with a L = 2 unit cell. Compare your results for the
energy with the function2 tfi_exact.infinite_gs_energy.

c) One advantage of the infinite formulation is that one can extract the correlation
length directly from the eigenvalues of the transfer matrix. For the L = 2 unit
cell and right-canonical B0, B1 tensors (as saved in MPS.Bs), we define the transfer
matrix as the contraction

T(aa′),(cc′) =
∑

i0,i1,b,b′

B
[0]i0
ab B

[0]i0
a′b′ B

[1]i1
bc B

[1]i1
b′c′ (1)

Write a function to contract the transfermatrix T for a given MPS.

d) Find the ground state of the infinite system for a few values of g ∈ [0.5, 1.5] and plot
the absolute value of the 3 largest (in magnitude) eigenvalues of the transfermatrix
versus g. How can you interprete the result?

Hint: Use scipy.sparse.linalg.eigs(..., which=’LM’).
1Download them again if you modified them last week!
2 It uses an analytical formula obtained by mapping the system to free fermions, see P. Pfeuty, The one-

dimensional Ising model with a transverse field, Annals of Physics 57, 79 (1970).
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Exercise 10.2: PEPS with simplified update and boundary MPS

This exercise uses the provided file e_tps.py, which imports a few parts parts of a_mps.py,
c_tebd.py and should work regardlessw whether you modified these files in the previous
exercise or not.

a) Read the file e_tps.py. It defines a class representing a tensor product state and
functions to run the simplified update to find the ground state of the transverse field
Ising model on a honeycomb lattice (run_simplified_update). Given the TPS, it is
nontrivial to evaluate epxectation values, which can be done with evaluate_exp_vals

using the method of infinite boundary MPS and TEBD. Run a whole simulation
using the function example_run_ising_honeycomb.

b) Define the bond-operators for measuring the magnetization in x and z direction and
write a function similar to example_run_ising_honeycomb measuring these operators
as well.

c) Check the convergence with the different parameters: for different chi_tps = 2, 3, 4,
. . . check convergence with chi_mps and plot the energy and/or magnetization versus
chi_tps.

d) Can you find the transition with g? Compare to the result of a Quantum-Monte
carlo methods (Henk W. J. Bloete and Youjin Deng Phys. Rev. E 66, 066110),
which yields a critical field gc = 2.13250(4).

Bonus) In case you still have plenty of time: Use the function evaluate_exp_vals to evaluate
the partition function and magnetization of the 2D classical Ising model.

2


