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Exercise 9: Density matrix renormalization group

This exercise uses the provided files a_mps.py,b_model.py,tfi_exact.py from last week and
d_dmrg.py.

a) To use DMRG as discussed in the lecture, we need to write the Hamiltonian H
as a matrix product operator (MPO). Extend the TFIModel class of b_model.py to
generate a list of W tensors representing the MPO during the initialization. The
model should save the MPO as a list self.H_mpo, containing one W entry for each
site. Each W should be a numpy array with 4 indices in the order (bond index
left, bond index right, local physical index ket, local physical index bra). At the
boundaries, the MPO is automatically terminated in the DMRG code by

vL =
(
1 0 . . .

)
(left) and vR =

 ...
0
1

 (right boundary). (1)

Hint: One can choose the W independent of the sites as

W =

1 σx −gσz
0 0 −Jσx
0 0 1

 (2)

b) Read the code of d_dmrg.py. To run a DMRG simulation, you need to initialize an
instance of the DMRGEngine class in d_dmrg.py and call it’s sweep method a few times.
Initialize an MPS with all spins pointing up, a model for L = 14, J ≡ 1, g = 1.5
and a DMRGEngine. How many sweeps does DMRG need to converge? Compare the
energy of the resulting state after each sweep with the ground state energy obtained
by exact diagonalization (tfi_exact.py).

c) Write a function to perform a full DMRG simulation. The function should initialize
an initial MPS, model and the DMRGEngine and perform sweeps until convergence.
Finally, it should return the model and state.

d) Use this function to determine the half-chain entanglement entropy S (at the cen-
tral bond) of the ground state for system sizes L = 8, 16, 32, 64, 96, 128 for g =
1.5, 1.0, 0.5 and J = 1 and plot it. At the critical point, the leading scaling with
L is given by S(L) = c

6
log(L), where c is the central charge. Extract the central

charge c.

Hint: Make sure that you chose your bond dimension large enough to be converged
with it. You can use np.polyfit to extract c if you fit a straight line to S vs. log(L).
Use only a few points of the largest L available to get the dominant behaviour at
large L.
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e) Write a function to (efficiently) calculate (equal-time) correlation functions like
〈ψ|XiYj |ψ〉 for some single-site operators X, Y , which are applied on sites i and j,
respectively. The functions should take |ψ〉 , X, Y and i as an input and calculate
the correlations 〈ψ|XiYj |ψ〉 for all j ≥ i.

Hint: Distinguish the cases i = j and i < j. Assume that |ψ〉 is given in right
canonical B form (since our DMRG implementation returns it as such). Use the
orthonormality conditions of the canonical form on sites k for k < i (left canonical
form) and k > j to simplify the expression of the correlation function to the following
network (for i < j):

〈ψ|XiYj |ψ〉 = (3)

To keep track of the indices which you need to contract with np.tensordot, it can
help to draw diagrams and label the legs. It is possible to write the function with
a computational cost of O((L− i)1), i.e., a single for loop of j.

f) Run DMRG for g = 0.5, 1., 1.1, 1.2, 1.5 and L = 100. Calculate and plot the cor-
relations 〈σxL/4σxj 〉. Does it agree with your expectations? How do the correlations
decay at g = 1 and g > 1?

g) Plot the connected correlations C(j) = 〈σxL/4σxj 〉 − 〈σxL/4〉 〈σxj 〉 versus j − L/4 on

a logarithmic y-scale. For g 6= 1, extract the correlation length ξ by a fit C(j) ∝
exp(− |j−L/4|

ξ
).

Hint: Again, you can use np.polyfit if you fit log(C(j)) vs. |j − L/4|.
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