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Exercise 8: Time evolving block decimation (TEBD)

This exercise uses the provided files a_mps.py, b_model.py, c_tebd.py (and for comparison
some exact diagonalization code in tfi_exact.py).

a) Read the code in the file a_mps.py. This file defines the class MPS in an object-oriented
approach. In short, defining the class is defining a “type” which collects data in
attributes (e.g. MPS.Bs, MPS.L) and has methods (e.g. MPS.site_expectation_value)
which can use the attributes (referenced with the special first argument self) for
calculations. Generate an instance of the MPS class representing the state |↑↑ . . . ↑〉
with the function init_spinup_MPS, for the start with L = 14 sites. Check that the

(site) expectation values of the operators σz =

(
1 0
0 −1

)
and σx =

(
0 1
1 0

)
give the

expected values.

b) Write a function similar to init_spinup_MPS, but initialize an MPS for the state
|→→ · · · →〉. Check the expectation values again.

Hint: This state is also a product state of |→〉 = 1√
2
(|↑〉+ |↓〉), so the singular values

remain the same and the shape of each B is still (1,2,1). You should expect rounding
errors of the order of machine precision ≈ 10−15.

c) Read the file b_model.py. It defines a class representing the transverse field ising
model for a given choice of coupling parameters. Calculate the energy for L =
14, J = 1 and g ∈ { 0.5, 1, 1.5 } for each of the above defined two product states.

d) Read the file c_tebd.py, which implements the time evolving block decimation. Call
the function example_TEBD_gs_finite, which performs an imaginary time evolution
to project onto the ground state. (As we will see next week, DMRG is an better
alternative to find ground states, but since we only discussed TEBD so far, we use
this method.)

e) Global quench. Calculate the real time evolution of the spin-up state, |ψ(t)〉 =
e−iHt |↑ . . . ↑〉 for L = 14, J = 1, g = 1.5. As a first choice, use the parameters
chi_max = 30, eps=1.e-10. Evolve up to time t = 10J . Measure and plot the total
magnetization

∑
σz
i and the half-chain entropy as a function of time t.

Hint: Don’t forget the imaginary i for the time step when calculating U_bonds.
For the measurements, you can use the methods MPS.site_expectation_value and
MPS.entropy.

f) By plotting the same expectation values for different parameter choices, check
whether (or up to which time) the results are converged in dt and chi_max, for
the small chain of L = 14 and for a larger chain with L = 50.
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g) Write a function replacing c_tebd.run_TEBD to run TEBD with a second-order (in dt)
Trotter-decomposition. Regenerate the plot of f) with the second-order TEBD.

Hint: E.g. for N_steps = 3, the first order expansion evolves with

e−iH
Edte−iH

Odte−iH
Edte−iH

Odte−iH
Edte−iH

Odt, (1)

while the second order expansion would read

e−iH
E dt

2 e−iH
Odt e−iH

E dt
2 e−iH

E dt
2︸ ︷︷ ︸

=e−iHEdt

e−iH
Odt e−iH

E dt
2 e−iH

E dt
2︸ ︷︷ ︸

=e−iHEdt

e−iH
Odte−iH

E dt
2 (2)

Therefore, you need another argument U_bonds_half_dt.

h) Local quench. Calculate the (approximate) ground state |ψ0〉 of a L = 50 chain
using c_tebd.example_TEBD_gs_finite for g = 1.5. Apply the local operator Sx

n0
,

where n0 is the index of a site in the center of the chain, by multiplying it to the
corresponding B tensor of the ground state1. Perform a real time evolution of this
initial state. Measure the entropy for cuts on the different bonds. Create a color-
plot showing the entropy versus time t on the y-axis and the bond of the cut n on
the xaxis. You should observe a light-cone structure.

1Since Sx
n0

is unitary, the canonical form is preserved and you don’t need to worry about that. Be warned
that if you apply a generic operator like S+

n0
, you need to restore the canonical form before starting the time

evolution
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