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Exercise 7.1: Area law - ground state versus random state

We consider a chain of an even length L of spin-1
2

degrees of freedom; the Hilbert space
has thus dimension 2L. Moreover, we consider half-chain bipartitions into regions A (left
half) and B (right half).

a) Using exact diagonalization and/or the lanczos algorithm from last week(s) exercise
sheets, generate the ground state of the transverse field Ising model for L = 14, g =
1.5, J ≡ 1. The state should be given by 2L complex numbers ψi (arranged into a
1D array) such that

|ψ〉 =
2L−1∑
i=0

ψi |i〉 =
∑

j1,...,jL∈{ 0,1 }

ψj1,...,jL |j1, . . . , jL〉 , (1)

where we identify the basis states with binary representations of the index i (c.f.
sheet 5), e.g., for L = 6 we have

|↑↓↑↓↓↑〉 ≡ |j1 = 0, j2 = 1, j3 = 0, j4 = 1, j5 = 1, j6 = 0〉 = |i = 0101102 = 2210〉 .

b) Convince yourself that psi_ab = np.reshape(psi_i, (2**(L//2), 2**(L//2))) arranges
the state into the form

|ψ〉 =
2
L
2 −1∑
a=0

2
L
2 −1∑
b=0

ψa,b |a〉A |b〉B , (2)

where |a〉A labels the basis states in the left half A, and |b〉B in the right half,
respectively. (The result ψa,b is a 2D array, i.e., a matrix with the same number 2L

of entries as in the original state.)

Hint: In general, i = a · 2L
2 + b, e.g, for the above example,

|↑↓↑↓↓↑〉 = |i = 0101102 = 0102 · 10002︸ ︷︷ ︸
=810=23

+1102〉 = |a = 0102〉A |b = 1102〉B . (3)

c) Find the Schmidt decomposition |ψ〉 =
∑

α λα |α〉A |α〉B by performing a singular
value decomposition of ψa,b.

Hint: Here and in the following: if you get a LinAlgError: SVD did not converge, try
using scipy.linalg.svd(...., lapack_driver=’gesvd’).

d) Sort the Schmidt values descending and plot the largest 20 Schmidt values λα versus
the index α. Use a logarithmic y-axis for the Schmidt values λα.
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e) Generate a random state drawn from the Haar measure of the full Hilbert space.

Calculate its Schmidt spectrum λ̃α as in c) and include it into the plot of d).

Hint: To draw a state from the Haar measure means to choose a normalized vector
(uniformly) pointing in a random direction. You get such a vector if you draw
the real and imaginary part of each coefficient from independent normal (gaussian)
distributions and finally normalize it.

f) Write a function which calculates the entanglement entropy S = −
∑

α λ
2
α log(λ2α)

(when given λα).

g) Calculate the entanglement entropy S of each

• the ground state in the paramagnetic phase (g = 1.5J),

• the ground state at the critical point (g = J)

• the ground state in the ferromagnetic phase (g = 0.5J), and

• a random state drawn from the Haar measure

for various system sizes L = 6, 8, 10, 12, 14. Plot S versus L. What do you observe?

Exercise 7.2: Matrix product state (MPS) basics

An MPS is just a different representation of eq. (1),

|ψ〉 =
∑
j1,...,jL

χ2−1∑
α2=0

· · ·
χL−1∑
αL=0

M [1]j1
α1α2

M [2]j2
α2α3

. . .M [L]jL
αLαL+1

|j1, j2, . . . , jL〉 . (4)

Here, α1 and αL+1 are dummy indices with a single entry only (χ1 = χL+1 = 1), such
that the matrix product of the Ms for a given index combination (j1, . . . , jL) yields a
1× 1 matrix which we can identify as the coefficient ψj1,...,jL .

a) Get the ground state of the transverse field Ising model for L = 14, g = 1.5, J ≡ 1
as in Exercise 7.1 a). Make sure it is normalized to 〈ψ|ψ〉 = 1.

b) Write a function compress(psi, L, chimax), which takes the state, length of the chain
and the maximal desired bond dimension chimax as input and compresses the state
into MPS form using successive SVDs. It should return a list of L numpy arrays,
namely the M [n], each with 3 indices (αn, jn, αn+1).

Hint: Let me define the indices Rn = (jn, jn+1, . . . , jL), such that R1 ≡ i.

First, introduce the dummy index α1 with a reshape of psi into shape (1, 2L) for
the indices α1, R1 Then you can perform a loop over n which generates one M [n]

in each iteration by splitting ψαn,Rn = M
[n]jn
αn,αn+1ψαn+1,Rn+1 . The necessary steps for

this iteration are:

• Reshape ψαn,Rn into shape (χn · 2, dim(Rn+1)). Note that dim(Rn) = 2L−(n−1).
This corresponds to a regrouping of the indices into Ln ≡ (αn, jn) and Rn+1 =
(jn+1, jn+2, . . . , jL).

• Perform an SVD to split ψLn,Rn =
∑

αn+1
MLn,αn+1λαn+1ψ̃αn+1,Rn+1 .
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• If necessary, truncate to smaller dimension χn+1 ≤ χmax. With numpy arrays,
this can be done as follows:

keep = np.argsort(lambda_n )[:: -1][: chimax]

M_n = M_n[:, keep]

lambda_ = lambda_n[keep]

psitilde = psitilde[keep , :]

• ReshapeM [n] into shape (χn, 2, χn+1) to obtain the indices (Ln, αn+1)→ (αn, jn, αn+1).

• Re-absorb the Λn into ψαn+1,Rn+1 = λαn+1ψ̃αn+1,Rn+1 using
psi = lambda[:, np.newaxis] * psitilde[:, :]

The final ψαL+1,RL+1
is just a 1× 1 matrix containing at most a phase (and overall

norm of ψ, you can simply discard it.

c) What is the maximally necessary bond dimension for L = 14? Call compress() for
the ground state with χmax larger than that to get an exact MPS representation
|ψMPS
ex 〉.

d) Call compress() again with χmax = 10 to get a compressed MPS |ψMPS
compr〉. Compare

the number of floats stored in both MPS.

Hint: The number of elements in a numpy array M are given by M.size.

e) Write a function to calculate the overlap between two MPS. Recall from class that
there is an inefficient way (first contracting the bra and ket on top and bottom
separately and finally contracting over the j1, . . . jn) and an efficient way (con-
tracting from left to right); implement the efficient one! Check that the overlap
〈ψMPS

ex |ψMPS
ex 〉 is (close to) 1 and calculate the overlap 〈ψMPS

ex |ψMPS
compr〉.

f) Write the state |↑↑ · · · ↑〉 as an MPS with bond dimension 1. Calculate the overlap
of this state with the ground state (using MPS techniques).
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