
Computational Methods in Many-Body Physics Tutorial 6
Prof. M. Knap, Prof. F. Pollmann Summer Term 2018
J. Hauschild 2018-05-25

Exercise 6.1: Lanczos algorithm - ground state and dynamical
properties

The file lanczos.py contains an implementation of the lanczos algorithm and functions to
generate a sparse matrix representing the (by now familiar) Hamiltonian of the transverse
field Ising model, where we choose ferromagnetic J = 1 for now. For simplicity, we use
the full basis and do not exploit symmetries to block-diagonalize H.

a) Generate the Hamiltonian for L = 14 and g = 1.5 using the functions provided in
lanczos.py. Moreover, generate a random state (in the full basis), which we can use
as a starting vector for the Lanczos iteration.

b) Call the function lanczos() with parameters N=200, stabilize=False. The function
returns the tridiagonal matrix T and orthonormal basis of the Krylov space gen-
erated during the Lanczos iteration. Determine the 10 smallest eigenvalues of T
using np.linalg.eigvalsh. Do you find a ground state degeneracy? Do you expect a
degeneracy for these parameters?

Call lanczos() again with stabilize=True. What does this option do? Do you get the
expected degeneracy now? Can you explain this? Confirm the results by comparing
with the (quasi-exact) energies returned by scipy.sparse.linalg.eigsh.

c) Find the ground state |u0〉 of T and use it to find the ground state |ψ0〉 of H in the
full basis. Check that the state you obtain is normalized, has the correct energy
E0 = 〈ψ0|H|ψ0〉. Calculate the variance 〈ψ0|H2|ψ0〉− 〈ψ0|H|ψ0〉2 to see if |ψ0〉 is an
eigenstate of H.

Hint: Let V denote the matrix containing the vectors returned by lanczos() as
columns, then V †HV = T Hence, if |u〉 is an eigenvector of T , |ψ0〉 := V |u0〉 is an
(approximate) eigenvector of H.

To determine dynamical properties, we want to calculate

I(Ô, z) = − 1

π
Im 〈ψ0|Ô†

1

z −H
Ô|ψ0〉︸ ︷︷ ︸

≡x0

with z = ω + E0 + iε (1)

Recall from class that this can be done by starting a Lanczos iteration from |φ0〉 = Ô |ψ0〉,
which gives us the tridiagonal matrix T such that

z − T =


z − α0 −β1
−β1 z − α1 −β2

−β2 z − α1
. . .

.

 (2)

1

Using Kramers Rule, we can evaluate x0 = detA
det(z−T) , where A is z−T with the first column

replaced by the unit vector (1, 0, . . .)T . This leads to the continued fraction

x0 =
1

z − α0 − β2
1
detD2

detD1

,

detD2

detD1

=
1

z − α1 − β2
2
detD3

detD2

, (3)

detD3

detD2

=
1

z − α2 − β2
3
detD4

detD3

, . . .

where Dn is the matrix z − T with the first n rows and columns ommited. For a N ×N
matrix T , the last ratio evaluates as

detDN−1

detDN−2
=

1

z − αN−2 −
β2
N−1

z−αN−1

(4)

d) Construct the state |φ0〉 = S+
0 |ψ0〉 and get the tridiagonal matrix T of a Lanczos

iteration starting from this initial state. Here, S+
j = 1

2
(σxj + iσyj) labels the spin-

raising operator on site j.

Hint: To construct S+
0 , take a look at lanczos.py again.

e) Write a function which (given z and T) evaluates the continued fractions of eq. (3)
to calculate I.

Hint: You can extract α and β from T using np.diag. Take care that we labeled αn
starting from n = 0 , while for βn we start from n = 1.

f) Plot I(S+
0 , ω) versus ω. Choose z = ω + E0 + iε for ω ∈ [−1, 10] and ε in the order

of 0.001 . ε . 0.1. What is the influence of ε?

Hint: There’s a good chance that the function calculating I from e) works with z
being a numpy array with different ω values; this will lead to a faster evaluation
than calling it for each ω separately.

g) To get more physical insight, we can choose a momentum-dependent operator for

Ô. Calculate I(S+
k , ω) for the k values compatible with the chosen L = 14, where

S+
k is defined as

S+
k =

1√
L

L−1∑
j=0

eijkS+
j . (5)

Create a 2D colorplot of I(S+
k , ω) with k on the x-axis and ω on the y-axis.

Hint: To create the colorplot, you can use the function provided in lanczos.py.

h) Regenerate similar colorplots for other values of g in both phases and at the critical
point, both for ferromagnetic J = 1 and antiferromagnetic J = −1.

Bonus Use for Ô the fermionic creation (c†k) and annihilation (ck) from the Jordan-Wigner
transformation, defined by

c†k =
1√
L

∑
j

e−ijkc†j, c†j = σz ⊗ · · · ⊗ σz ⊗ S+
j ⊗ 1⊗ · · · ⊗ 1. (6)

2

