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Exercise 6.1: Lanczos algorithm - ground state and dynamical
properties

The file 1anczos.py contains an implementation of the lanczos algorithm and functions to
generate a sparse matrix representing the (by now familiar) Hamiltonian of the transverse
field Ising model, where we choose ferromagnetic J = 1 for now. For simplicity, we use
the full basis and do not exploit symmetries to block-diagonalize H.

a) Generate the Hamiltonian for L = 14 and g = 1.5 using the functions provided in
lanczos.py. Moreover, generate a random state (in the full basis), which we can use
as a starting vector for the Lanczos iteration.

b) Call the function lanczos() with parameters N=200, stabilize=False. The function
returns the tridiagonal matrix 7" and orthonormal basis of the Krylov space gen-
erated during the Lanczos iteration. Determine the 10 smallest eigenvalues of T
using np.linalg.eigvalsh. Do you find a ground state degeneracy? Do you expect a
degeneracy for these parameters?

Call 1anczos () again with stabilize=True. What does this option do? Do you get the
expected degeneracy now? Can you explain this? Confirm the results by comparing
with the (quasi-exact) energies returned by scipy.sparse.linalg.eigsh.

¢) Find the ground state |ug) of T" and use it to find the ground state |1)g) of H in the
full basis. Check that the state you obtain is normalized, has the correct energy
Eo = (1ho|H|th). Calculate the variance (¢ H2|tho) — (o H |1bo)> to see if ) is an
eigenstate of H.

Hint: Let V denote the matrix containing the vectors returned by lanczos() as
columns, then VTHV = T Hence, if |u) is an eigenvector of T', 1) := V |ug) is an
(approximate) eigenvector of H.

To determine dynamical properties, we want to calculate
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Recall from class that this can be done by starting a Lanczos iteration from |¢g) = O |1b),
which gives us the tridiagonal matrix 7" such that
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Using Kramers Rule, we can evaluate ¢ =

dde‘, where A is z—T with the first column
et(z—T)

replaced by the unit vector (1,0,...)%. This leads to the continued fraction
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where D,, is the matrix z — T with the first n rows and columns ommited. For a N x N
matrix 7', the last ratio evaluates as
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Construct the state |¢g) = Sy |to) and get the tridiagonal matrix T of a Lanczos

iteration starting from this initial state. Here, S} = (0¥ + io?) labels the spin-

2
raising operator on site j.

Hint: To construct Sy, take a look at lanczos.py again.

Write a function which (given z and T') evaluates the continued fractions of eq.
to calculate I.

Hint: You can extract o and S from T using np.diag. Take care that we labeled «,,
starting from n = 0 , while for 3, we start from n = 1.

Plot I(Sg,w) versus w. Choose z = w + Ey + ie for w € [—1,10] and € in the order
of 0.001 < e <0.1. What is the influence of €?

Hint: There’s a good chance that the function calculating I from |e)| works with z
being a numpy array with different w values; this will lead to a faster evaluation
than calling it for each w separately.

To get more physical insight, we can choose a momentum-dependent operator for

O. Calculate I(S;},w) for the k values compatible with the chosen L = 14, where
Sif is defined as
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Create a 2D colorplot of I(S;",w) with k on the z-axis and w on the y-axis.

Hint: To create the colorplot, you can use the function provided in lanczos.py.
Regenerate similar colorplots for other values of g in both phases and at the critical
point, both for ferromagnetic J = 1 and antiferromagnetic J = —1.

Use for O the fermionic creation (c}) and annihilation (¢;) from the Jordan-Wigner
transformation, defined by
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