
Computational Methods in Many-Body Physics Tutorial 4
Prof. M. Knap, Prof. F. Pollmann Summer Term 2018
J. Hauschild 2018-05-11

Exercise 4: Exact diagonalization

In this exercise, we consider the transverse field Ising model in 1D, given by the Hamil-
tonian

H = −J
L∑

j=0

σx
j σ

x
j+1 − g

L−1∑
j=0

σz
j , (1)

where we used periodic boundary conditions, σx
L ≡ σx

0 . As discussed in the lecture, this
model shows (for L → ∞) a quantum phase transition at g = 1. To see this transition,
we need to find the groundstate while tuning g (keeping J ≡ 1 as the unit of energy).
The goal of this exercise is to represent eq. (1) as a sparse matrix, scipy.sparse.csr_matrix
and diagonalize it with (a variant of) the Lanczos algorithm provided in scipy.

a) Define the 2× 2 matrices

Id = 1 =

(
1 0
0 1

)
Sx = σx =

(
0 1
1 0

)
Sz = σz =

(
1 0
0 −1

)
(2)

as scipy.sparse.csr_matrix

b) When we write σz
j in eq. (1), what we mean is

σz
j ≡ 1⊗ · · · ⊗ 1⊗ σz ⊗ 1⊗ · · · ⊗ 1 (3)

where the σz is at the jth position, and similar for σx
j . The operator σz

j corresponds

thus to a 2L × 2L matrix. To implement the tensor product, you can use succesive
calls to scipy.sparse.kron(), e.g. to generate 1⊗ 1⊗ σz ⊗ 1:

full = scipy.sparse.kron(Id , Id , format=’csr’) # 1 1

full = scipy.spares.kron(full , Sz , format=’csr’) # 1 1 Sz

full = scipy.spares.kron(full , Id , format=’csr’) # 1 1 Sz 1

Write a function which returns (for given L) a list, which contains a representation
of σz

j (in the form of a csr_matrix) as jth entry of the list .

c) Write a similar function returning the σx
j operators.

d) Write a function gen_hamiltonian(sx_list, sz_list, g, J) generating the Hamilto-
nian as a csr_matrix of shape 2L× 2L, where the arguments sx_list, sz_list should
be the lists generated by the functions defined in b) and c).

Hint: Addition and scalar multiplication of sparse matrices work as expected with +

and *. For two csr_matrix, the code A*B gives the matrix product of A and B. (This
is different from numpy arrays where A*B gives the element-wise product!) Also note
A⊗B = (A⊗ 1)(1⊗B), hence σx

j σ
x
j+1 can be obtained by a matrix product of σx

j

(in the sense of eq. (3)) with σx
j+1.

1



Check that the function works as expected, e.g., for L = 2 and g = 0.1, you should
obtain

H(L = 2, g = 0.1, J = 1) =


−0.2 0 0 −2

0 0 −2 0
0 −2 0 0
−2 0 0 0.2

 . (4)

Hint: You can convert the sparse H to a non-sparse numpy array with H.toarray()

for the comparison. Remember to use periodic boundary conditions.

e) When you haveH as a csr_matrix, you can use the function scipy.sparse.linalg.eigsh

to obtain the ground state. This function uses (an improved version of) the Lanczos
method discussed in the lecture. Read the documentation to find out how to obtain
the 3 eigen states (and eigen values) with smallest (algebraic) eigen values.

Optionally: Compare the run time of scipy.sparse.linalg.eigsh with the full diag-
onalization performed by np.linalg.eigh (acting on a non-sparse numpy array) for
L = 12.

f) For system sizes L ∈ { 6, 8, 10, 12 }, calculate the ground state for ≈ 20 values
of g ∈ [0, 2]. Calculate and plot the largest-distance spin-spin correlation C =
〈ψ0|σx

0σ
x
L/2|ψ0〉 against g for the various system sizes.

Hint: To calculate C, apply the operators (= sparse matrices) σx
0 and σx

L/2 to the

ground state using matrix-vector products (implemented as op*v0) and calculate the
overlap of the result with the the ground state (e.g., using np.inner).

g) Plot the excitation energies for the first two excited states versus g. Does the result
coincide with your expectations?

2


