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Stability and Long Term Behavior of a Hebbian Network of Kuramoto Oscillators∗

Robert W. Hölzel† and Katharina Krischer†

Abstract. We investigate the limit sets of a network of coupled Kuramoto oscillators with a coupling matrix
determined by a Hebb rule. These limit sets are the output of the network if used for the recognition
of a defective binary pattern out of several given patterns, with the output pattern encoded in the
oscillators’ phases. We show that if all pairs of given patterns have maximum Hamming distance,
there exists a degenerate attractive limit set that contains the steady states corresponding to each
of the given patterns. As a result, switching between output patterns occurs for arbitrarily small
modifications of the dynamics (for example, due to frequency inaccuracies). Even if the maximum
Hamming distance constraint is dropped, numerical results suggest that the structural instability
of the vector field persists. We conclude that the unique interchangeability of output patterns in
Hebbian networks of Kuramoto oscillators, while sacrificing robustness, makes these networks more
flexible than similar neural networks with separated, attractive output states.
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1. Introduction. Networks of coupled phase oscillators with a coupling matrix determined
by a Hebb rule have been a popular model of neural network theorists for some time [1, 2,
3, 4, 5, 7, 8, 10, 14, 15, 16, 17, 18], in particular, because they are tractable with powerful
mathematical tools originally developed for the description of synchronization phenomena.
More recently, such phase oscillators have also been successfully employed in experimental
neural networks [6, 12]. In spite of this considerable amount of research that has already
gone into this type of network, its dynamics are still not understood as well as other, very
similar neural network models (the Hopfield network is a good example [9]). We will explain
specifically what we mean by “not well understood” right after introducing the equations and
mode of operation of a Hebbian network of Kuramoto oscillators: The network of coupled
phase oscillators is described by the dynamical equations

(1.1) ϕ̇i = ωi +
1

N

N∑
j=1

wij sin(ϕj − ϕi),

where ϕi is the phase shift of an individual oscillator with phase ϑ(t) = Ωt+ ωit + ϕi(t). Ω
is the mean frequency, ωi is a small deviation from Ω with

∑
ωi = 0, and N is the size of

the network. The coefficients wij are the entries of the coupling matrix. The network can be
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used to identify a binary pattern vector ξ (ξi = ±1, i = 1, . . . N) as one of a given set of M
memorized patterns ξk, k = 1, . . . ,M , in the following way: First, the coupling matrix is set
to wij = ξiξj for some initial pattern ξ. As a result, the phase shifts ϕi will evolve towards a
distribution reflecting this pattern, i.e., the overlap

(1.2) m =
1

N

√√√√( N∑
i=1

ξi sinϕi

)2

+

(
N∑
i=1

ξi cosϕi

)2

will become equal to 1 (or slightly smaller if not all frequencies are exactly the same). The
overlap is a convenient way to check whether a given pattern is currently represented by the
state of the network. Like the system (1.1), m is invariant under global rotations. After this
initialization of the network, the coupling coefficients are set to wij =

∑
k ξ

k
i ξ

k
j , which is an

application of the Hebb rule. If recognition is successful, the network now evolves towards a
state close to the memorized pattern which is closest to its initial state. For example, if ξ is a
slightly defective copy of ξ1, the desired final state of the network would be one where m1 = 1
and mk = 0, k = 2, . . .M .

The initialization process is well understood—it is equivalent to the synchronization of an
array of coupled Kuramoto oscillators, where the overlap m is the order parameter [13]. In con-
trast, surprisingly little is known about the dynamics of the recognition process; especially, it is
not known what exact states the network settles for and how robust these states are. With re-
spect to these questions, previous publications concerned with Hebbian networks of Kuramoto
oscillators fall in one of two categories. In publications of the first category, it is just assumed
that patterns are recognized sufficiently well for practical purposes and example simulations
and/or experiments are presented to corroborate this [6, 7, 10, 12]. Publications of the second
category generally use a mean field approach [1, 2, 3, 4, 5, 15, 16, 17, 18], dealing with the
order parameters mk. With the mean field approach, it can be shown that in the thermody-
namic limit N → ∞, there is a phase transition between a so-called “glassy state” equivalent
to failed pattern recognition and a regime with a “condensed” memorized pattern [2, 15]. This
transition depends on the three macroscopic parameters α, Δω, and T , where α = M/N is the
load rate, Δω is the width of the oscillators’ frequency distribution, and T is a temperature
determining the magnitude of an additional white noise term. In the limit of α → 0 and
T → 0, the phase transition is equivalent to the transition in the original Kuramoto model.

One point that is not considered in the mean field approach is the relationship between
states in phase space representing different condensed patterns, although it seems to be implic-
itly assumed that they are separate attractors. Also, little is known about their exact location.
This issue is the motivation for the article at hand. We investigate the dynamics of individual
oscillators given by (1.1) directly in order to characterize the limit set(s) approached by the
dynamics during the pattern recognition process.

Section 2 deals with optimal sets of memorized patterns. Optimal here means that the
memorized patterns are mutually orthogonal (ξk · ξl = 0 for k �= l). This is equivalent to
all patterns having the maximum possible Hamming distance from each other (since inverted
patterns are equivalent to the original pattern, the maximum Hamming distance is N/2, not
N). It turns out that there are no separate attractors corresponding to the memorized patterns.
As a consequence, pattern recognition is not structurally stable.
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Section 3 is concerned with the more general case of ξk · ξl �= 0. Since it is harder to
argue analytically in this case, we present some numerical results that corroborate the theory
that pattern recognition in this case is no more robust than in the special case of memorized
patterns with maximum Hamming distance.

In the discussion in section 4, we give an explanation why this kind of behavior was not
found in previous analyses using a mean field approach.

2. Recognition from a set of mutually orthogonal patterns. Consider again the dynam-
ical equations for the recognition step:

(2.1) ϕ̇i(ϕ1, . . . , ϕN ) =
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi).

To analyze this equation it is helpful to abstract from the global phase shift symmetry. There-
fore, from here on, a fixed point is referred to as attractive if N−1 eigenvalues of the Jacobian
are smaller than zero (the last one, corresponding to the eigenvector (1, 1, . . . , 1)T is always
equal to zero, due to the global symmetry). Also, a stationary state is called nonisolated
or degenerate only if the fixed point in question is not just trivially nonisolated (i.e., in any
neighborhood of the fixed point stationary states that are not located along the (1, 1, . . . , 1)T

eigenvector do exist).
For each pattern ξk, there is a corresponding one-dimensional manifold of fixed points of

(2.1). Let ϕ∗k denote any point on this manifold in phase space. In the case of the M = 1
pattern (i.e., for an initialization to ξ1), ϕ∗1 is a global attractor, namely, the synchronized
state of a set of coupled Kuramoto oscillators. In the terminology we introduced above, this
global attractor is isolated and attractive. For more than one memorized pattern, the ϕ∗k are
generally isolated and hyperbolically unstable [1]. However, in the special case of mutually
orthogonal patterns (i.e., ξl ·ξm = Nδlm, where δ is the Kronecker delta), things are different.
For this case, we prove the following three statements.

Theorem 2.1. The ϕ∗k are fixed points with an eigenvalue spectrum of (N −M)×−1 and
M × 0.

Proof. Consider the Jacobian J of (2.1):

(2.2) Jij =
∂ϕ̇i

∂ϕj
=

1

N

M∑
k=1

⎛
⎝ξki ξ

k
j cos(ϕj − ϕi)− δij

N∑
p=1

ξki ξ
k
p cos(ϕp − ϕi)

⎞
⎠ .

At the state ϕ∗l corresponding to pattern ξl this becomes

(2.3) Jij |ϕ∗l =
1

N

M∑
k=1

⎛
⎝ξki ξ

k
j ξ

l
jξ

l
i − δij

N∑
p=1

ξki ξ
k
pξ

l
pξ

l
i

⎞
⎠ =

1

N

M∑
k=1

ξki ξ
k
j ξ

l
jξ

l
i − δijδ

klξki ξ
l
i.

Therefore, J can be written as

(2.4) J |ϕ∗l =
M∑
k=1

Akl − I

with Akl
ij = ξki ξ

k
j ξ

l
iξ

l
j/N.
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Akl has a single nonzero eigenvalue for the eigenvector χkl = ξk ◦ ξl, where “◦” denotes
componentwise multiplication. The corresponding eigenvalue is 1. This can be seen by calcu-
lating Akl · χ with an arbitrary vector χ:

(2.5)
(
Akl · χ

)
i
=

1

N

N∑
j=1

ξki ξ
k
j ξ

l
iξ

l
jχj =

1

N
ξki ξ

l
i

N∑
j=1

ξkj ξ
l
jχj =

1

N
χkl
i χ

kl · χ.

Therefore all vectors orthogonal to χkl are eigenvectors of Akl with eigenvalue 0, while χkl is
an eigenvector with eigenvalue 1.

In conjunction with (2.4), this result shows that J |ϕ∗l has M eigenvalues equal to 0

with mutually orthogonal eigenvectors χkl, while the rest of the eigenvalues are equal to −1.
Without loss of generality, this holds for all J |ϕ∗k , where k = 1, . . . ,M .

Theorem 2.2. The ϕ∗k are nonisolated; they are part of a single, connected set of degenerate
stationary states which comprises all straight lines connecting any pair ϕ∗k, ϕ∗l in phase space
defined by

(2.6) ϕ̇|ϕ∗k+(ϕ∗l−ϕ∗k)u = 0

with the parameter u ∈ R and k, l ∈ {1, . . . ,M}.
Proof. For the second proposition, we compute the Taylor expansion of the dynamics along

the eigenvectors with eigenvalue zero of J |ϕ∗k . We show that the flow is zero for all points
in phase space along these vectors. We then show that the eigenvectors with eigenvalue zero
connect pairs of memorized patterns in phase space.

The vector field at points along the vector χkl, starting at ϕ∗k, and its first derivative are
given by

ϕ̇i(u) =
1

N

N∑
j=1

wij sin(ϕ
∗k
j − ϕ∗k

i + (χkl
j − χkl

i )u),(2.7)

∂uϕ̇i(u) =
1

N

N∑
j=1

wij(χ
kl
j − χkl

i ) cos(ϕ
∗k
j − ϕ∗k

i + (χkl
j − χkl

i )u).(2.8)

Here, u is a real parameter and both ϕ̇i(0) = 0 and ∂uϕ̇i(0) = 0 hold. The higher order
derivatives with respect to u are given by

(2.9) ∂(2n)
u ϕ̇i(0) =

1

N

N∑
j=1

wij(−1)n(χkl
j − χkl

i )
2n sin(ϕ∗

j − ϕ∗
i ) = 0

and

(2.10) ∂(2n+1)
u ϕ̇i(0) =

1

N

N∑
j=1

wij(−1)n(χkl
j − χkl

i )
2n+1 cos(ϕ∗

j − ϕ∗
i ),

where n ∈ N. Since all entries of χkl have the same absolute value, namely, |χkl
i | = 1, the last

equation reduces to

(2.11) ∂(2n+1)
u ϕ̇i(0) = (−1)n22n∂uϕ̇i(0) = 0.
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This means, all derivatives with respect to u vanish for u = 0. Since ϕ̇i(u) is analytical, it
must be identical to zero for all u. As a result, a whole line of stationary states extends from
ϕ∗k in phase space along each of the eigenvectors χkl. Since χkk = (1, 1, . . . , 1)T corresponds
to the global phase shift symmetry, there remain M − 1 zero eigenvectors in the subspace
orthogonal to the (1, 1, . . . , 1)T direction. These vectors connect pairs of patterns in phase
space, which can be verified by using the fact that

(2.12) χkl
j − χkl

i ∝ ϕ∗l
j − ϕ∗l

i − ϕ∗k
j − ϕ∗k

i

to substitute for χkl in (2.7), resulting in the left-hand side of (2.6).
Theorem 2.3. The set defined by (2.6) as a whole is attractive, which means that the ϕ∗k

are neutrally stable, if

(2.13) ∀m, l �= m : span(χkm, k �= l,m) ∩ span(χkl, k �= l,m) = 0.

Proof. Consider the Jacobian J along the vector joining ϕ∗l and ϕ∗m, l �= m, l,m ∈
{1, . . . ,M}, in phase space. Points along this vector are given by ϕ(u) = ϕ∗l + (ϕ∗m −
ϕ∗l)u, u ∈ R. The individual summands constituting the entries of the Jacobian given in
(2.2) evaluate to

ξki ξ
k
j cos(ϕj(u)− ϕi(u)) = ξki ξ

k
j cos(ϕ

∗l
j − ϕ∗l

i + (ϕ∗m
j − ϕ∗l

j )u− (ϕ∗m
i − ϕ∗l

i )u)

= ξki ξ
k
j cos

(
(ξliξ

l
j − 1)

π

2
+ (ξmi ξmj − ξliξ

l
j)
π

2
u
)

= ξki ξ
k
j ξ

l
iξ

l
j cos

(
(ξmi ξmj − ξliξ

l
j)
π

2
u
)

= ξki ξ
k
j

(
ξliξ

l
j (1− γ) + ξmi ξmj γ

)
,

where γ = (1− cos(uπ))/2. J can now be written as

(2.14) J = (1− γ)
M∑
k=1

Akl + γ
M∑
k=1

Akm − I.

Here, Axy are the matrices introduced in (2.4). The eigenvalue spectra of the three terms on
the right-hand side of (2.14) are

• M × (1− γ) and (N −M)× 0 for the first term,
• M × γ and (N −M)× 0 for the second term, and
• N ×−1 for the third term.

This means that λ ≤ 0 for all eigenvalues λ of J , since the largest eigenvalue of a sum of
hermitian matrices cannot surpass the sum of the largest eigenvalues of the summands (see,
for example, [11]). J has two eigenvalues that are always equal to zero, one belonging to the
eigenvector (1, 1, . . . , 1)T because of the global phase shift invariance, the other belonging to
the eigenvector χlm, which is the direction of the invariant connection between ϕ∗l and ϕ∗m

in phase space.
For more zero eigenvalues, there must be one or more vectors χ ∈ span(χkl, k �= l,m)

which simultaneously fulfill χ = span(χkm, k �= l,m). By enforcing (2.13), additional zero
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(a) (b)

Figure 1. (a) Surface plot of the potential U of the network dynamics in recognition mode (given by (2.15))
on a two-dimensional plane in ϕ-space spanned by χ12 = ξ1 ◦ ξ2 and χ13 = ξ1 ◦ ξ3. ϕ∗1 is the origin. The
location of special patterns in the plane is marked by labels. (b) Three-dimensional section of ϕ-space spanned
by χ12, χ13, and χ23 (so the front face of the cube is part of the plane shown in (a). ϕ∗1 is the origin. Solid
lines mark stationary states. The direction of the eigenvectors with negative eigenvalues for these states is
indicated by the colored arrows (red: χ23, green: χ12, blue: χ13). The absolute value of the eigenvalue is
indicated by the length of the line, ranging from 0 to 1. Note that all eigenvalues along directions other than
(1, 1, 1, 1, 1, 1, 1, 1)T , χ12, χ13, and χ23 are equal to −1 for these states. Also note that the global invariant
direction is orthogonal to the cube.

eigenvalues are avoided and therefore the degenerate set of states as a whole is attracting.
Because of this, it is also established that the ϕ∗k are neutrally stable.

We include Theorem 2.3 to corroborate that, in general, the set described in Theorem 2.2
is a maximally connected component of the set of equilibria. If (2.13) is violated, the set may
still be maximally connected, but we are unable to prove or disprove it. Unfortunately, it is
not particularly intuitive to grasp what condition (2.13) means, especially for a larger set of
patterns. All we can say is that with decreasing load rate α = M/N it becomes less and less
likely that (2.13) is violated if patterns are picked randomly. Another way to put it is that in
a sufficiently large network, it is always possible to choose patterns such that (2.13) holds. In
our numerical simulations with small numbers of oscillators and patterns, violations of (2.13)
never occurred. Constructed examples where (2.13) is violated seem to go hand in hand with
a serious overload of the network (for example, you could take M = N mutually orthogonal
patterns and end up with J = 0, i.e., the degenerate set of fixed points is the entire phase
space). With these considerations in mind, we assume that violations of (2.13) will not play
an important role when dealing with the neural network at hand.

For a better impression of the location of the degenerate state in phase space, consider
an example with N = 8 oscillators and M = 3 memorized mutually orthogonal patterns ξ1 =
(1, 1, 1, 1, 1, 1, 1, 1)T , ξ2 = (1, 1, 1, 1,−1,−1,−1,−1)T , and ξ3 = (1, 1,−1,−1, 1, 1,−1,−1)T .
Figure 1(a) visualizes the potential function of (2.1) (i.e., −∂U/∂ϕi = ϕ̇i), given by

(2.15) U = − 1

16

8∑
i=1

8∑
j=1

3∑
k=1

ξki ξ
k
j cos(ϕj − ϕi)
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in the vicinity of ϕ∗1 = 0 on a two-dimensional cross section of phase space spanned by the
vectors χ12 and χ13, which is the center manifold of ϕ∗1. ϕ∗1 is a representation of pattern ξ1.
By moving a distance of π/2 from ϕ∗1 along one of the two axes, one arrives at a representation
of patterns ξ2 and ξ3, respectively,

ϕ∗2 = (π/2, π/2, π/2, π/2,−π/2,−π/2,−π/2,−π/2)T ,

ϕ∗3 = (π/2, π/2,−π/2,−π/2, π/2, π/2,−π/2,−π/2)T .

By moving a distance of π/2 along both χ12 and χ13 from the origin, one arrives at another
pattern orthogonal to the other three:

ϕx = (π/2, π/2,−π/2,−π/2,−π/2,−π/2, π/2, π/2)T .

Since this pattern does not enter the coupling function, the potential function behaves differ-
ently here, showing a maximum.

If the dynamics were confined to the χ12-χ13–plane, the system could be expected to settle
for any state in the potential valleys between ϕ∗1 and ϕ∗2 or ϕ∗1 and ϕ∗3, depending on the
initial conditions (if there are no perturbations; for pattern recognition, the final state will be
closer to one of the patterns, because the initial pattern is closer to this pattern as well). These
values would then constitute the attractive limit set. However, since the potential landscape
for ϕ∗2 or ϕ∗3 looks analogous to Figure 1(a) in the χ12 − χ23 and χ13 − χ23 subspaces,
respectively, the minimal subspace containing the attractive limit set is three-dimensional.

Figure 1(b) shows the limit set in this subspace. The four patterns lie on the corners of
a cube in phase space. Points on the edges that are not adjacent to ϕx are fixed points with
eigenvalues λ ≤ 0. The eigenvectors belonging to negative eigenvalues are embedded in the
faces of the cube (the absolute value of λ is visualized by the colored arrows along the edges).
As a consequence, the degenerate state as a whole is an attractor. To visualize the flow on
the two-dimensional stable manifold surrounding the steady states on the lines connecting
the ϕ∗k, you can use the colored arrows in Figure 1(b): Starting out at ϕ∗1 and going right
towards ϕ∗2, attraction is first strong in the χ23-direction and very weak in the χ13-direction.
In the middle between ϕ1 and ϕ2, attraction is the same in both directions. Going even
further towards ϕ∗2, the two directions have reversed roles, with attraction now being strong
in the χ13-direction and weak in the χ23-direction. At ϕ∗1 and ϕ∗2, the attraction in one of
the two directions vanishes completely, and this direction becomes part of the two-dimensional
center manifold of the steady state in question.

Since the vector field is not structurally stable, a recognized pattern can be destroyed by
arbitrarily small deviations of the network from ideal behavior. For example, if the frequencies
of the oscillators are not exactly the same, an additional small constant term appears in the
dynamics: ϕ̇i → ϕ̇i + ωi, ωi � 1. To illustrate the effects of such inaccuracies, a numerical
simulation of

(2.16) ϕ̇i = ωi +
1

8

8∑
j=1

3∑
k=1

ξki ξ
k
j sin(ϕj − ϕi)

was performed. To obtain the ωi, first 8 values ω′
i were chosen randomly from the interval

[0 s−1,Δω = 0.02 s−1] with a uniform probability distribution. Then, the average value ω′
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(a)

(b)

Figure 2. (a) Numerical time integration of the phase shifts in (2.16) with random initial conditions, N = 8
oscillators, M = 3 memorized patterns, and one erroneous bit in the initial pattern. The initial pattern ξ and
the memorized patterns ξk are depicted above. Black squares correspond to ξi = −1, white squares correspond
to ξi = 1. The color of the border around each square corresponds to the color of the phase shift curve in the
plot. The coupling was switched to recognition mode at t = 1000 s. The choice of the frequency deviations ωi in
(2.16) is described in the text. (b) Time evolution of the overlaps m1, m2, and m3 of the pattern represented
by the network with the memorized patterns.

was subtracted from each ω′
i to obtain ωi. The latter was done to avoid a global change in

frequency leading to uniformly rotating solutions.
Adding the small terms ωi to the dynamics in (2.1) is equivalent to introducing a small

random tilt in the potential landscape of Figure 1(a). As a consequence, the network does
not settle for a steady state anymore during recognition (see Figure 2(a)). In the example
at hand, after the initial fast recognition (i.e., quickly evolving towards a state close to ϕ∗1),
the system begins to “roll” towards ϕ∗2. At this crossroad, the system leaves the χ12-χ13
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plane and moves towards ϕ∗3; from there on the system cycles through the patterns ϕ∗3-ϕ∗1-
ϕ∗3-ϕ∗2. This can be seen especially well in the time evolution of the overlaps m1, m2, and
m3 (Figure 2(b)). Another way to imagine the motion in phase space is to look at the cube
in Figure 1(b). The solid lines (and their extensions in the cyclical phase space), form the
attractive limit set of the network. At the beginning of the recognition process the system
starts out close to the ϕ∗1-corner and gets rapidly attracted to the ϕ∗1-ϕ∗2–edge, moving very
slowly towards ϕ∗2 due to the effect of the perturbation terms. Arriving at ϕ∗2, the system
speeds up and continues along the ϕ∗2-ϕ∗3–edge, and so on. Depending on the distribution
of the ωi, different movement patterns occur. In particular, the originally recognized patterns
may not be visited again at all during the traversal of the limit set.

3. Recognition from a general pattern set. Many derivations in the section above depend
on the mutual orthogonality of the memorized patterns. Therefore, it is much harder to
make analytically founded statements about the general case of arbitrary memorized patterns.
However, it is reasonable to assume that a remnant of the stable limit set remains for pattern
vectors that are near orthogonal—if not as a degenerate stationary state, then at least as a
network of slow manifolds, interspersed with some combination of stable and unstable, isolated
fixed points, where some of the eigenvalues might be very close to, but not equal to, zero. In
particular, attractors in the vicinity of the patterns are expected.

With this working hypothesis in mind, a series of numerical integrations of

(3.1) ϕ̇i = ωi +
1

N

N∑
j=1

M∑
k=1

ξki ξ
k
j sin(ϕj − ϕi)

in a network of N = 100 oscillators with M = 3 memorized patterns was performed. This
time, patterns were random, with the constraint that no mutually orthogonal patterns were
allowed, and the initial patterns differed from ξ1 in 10 entries. The random deviations ωi were
selected as described in the last section, with a spread of Δω = 0.02 s−1. As the values for N ,
M , and the number of defective bits are well within the storage and retrieval capacity of the
network, the short term recognition of pattern ξ1 worked each time.

Figure 3(a) shows the time evolution of m1, m2, and m3 for one particular simulation.
It looks very similar to Figure 2(b). After the initial recognition of pattern ξ1, a cyclical
oscillation between all three patterns sets in, indicating that the “remnant of the limit set”
mentioned above indeed exists.

Figure 3(b) shows data of another simulation. In this case, the system settles for a
stationary state which represents the correctly recognized pattern even in the presence of
noise. This is never observed for the case of mutually orthogonal patterns and corroborates
the assumption that there is an isolated attractor.

Surprisingly, as Figure 3(c) shows, it also happens that after some excursion in phase
space, the system settles for an attractor that is close to an incorrectly recognized pattern.
In this particular case, the system approaches a state representing pattern ξ3 for very long
times. This does not necessarily contradict the idea that there is an attractor in the vicinity
of ξ1. Its attraction could be too weak to balance the particular choice of ωi.

To get an idea how small the deviations must become to stop pattern switching (as in
Figure 3(a)) entirely, the spread of deviations Δω was varied over several orders of magnitude,
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(a)

(b)

(c)

Figure 3. Time evolution of the overlaps m1, m2, and m3 for the numerical integration of (2.16) with
random initial conditions, N = 100 oscillators, M = 3 memorized random patterns, and ten erroneous bits
(compared to the correct pattern ξ1) in the initial pattern. The coupling was switched to recognition mode at
t = 1000 s. The choice of the frequency deviations ωi in (2.16) is described in the text. (a) pattern switching,
(b) ξ1 is the long term solution, (c) ξ3 is the long term solution.
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Table 1
The table shows, for different values of the frequency detuning Δω, how often each possible type of long term

behavior occurred in a series of 100 numerical simulations of (3.1) with N = 100 oscillators, M = 3 randomly
selected memorized patterns (with equal probability for both states), and 10 erroneous bits in the initial pattern.
ξ1 was always the correct pattern. The relation between Δω and the frequency deviations ωi in (3.1) is explained
in the text. The long term behavior of the system was evaluated at t = 1000/Δω, the coupling was switched
to recognition mode at t = 1000 s. Note that the short term pattern recognition was always successful in these
simulations.

Δω Long term behavior

ξ1 ξ2 ξ3 Switching Transient

1× 10−5 s−1 15 19 32 21 13
3× 10−5 s−1 27 28 23 8 14
1× 10−4 s−1 19 26 26 12 17
3× 10−4 s−1 25 19 28 9 19
1× 10−3 s−1 23 21 27 14 15
3× 10−3 s−1 21 21 26 11 21
1× 10−2 s−1 26 18 25 15 16
3× 10−2 s−1 19 15 19 27 20
1× 10−1 s−1 11 29 20 15 25

from Δω = 1 s−1 down to Δω = 1× 10−5 s−1. For each value of Δω, a hundred simulations
were run for a time of 1000/Δω. After this time, the outcome was determined as one of five
possible results:

1. The system settled for ξ1 in the long run.
2. The system settled for ξ2 in the long run.
3. The system settled for ξ3 in the long run.
4. The system exhibited pattern switching.
5. The system was still in a transient.

Intuitively, one would expect an increase in correct pattern recognitions and a decrease in
faulty recognitions and pattern switching towards smaller values of Δω, due to the fact that
even weak attractors become stronger than the effects of perturbation terms. The actual
result is given in Table 1. Remarkably, there is no recognizable trend towards better long
term pattern recognition at low perturbation strength at all. Instead, all patterns get chosen
with roughly the same frequency. Also, the number of simulations exhibiting pattern switching
does not diminish in any way with reduced values of Δω. All this speaks against the presence
of weak attractors responsible for the long term behavior shown in Figures 3(b) and (c), at
least not in the unperturbed dynamics.

Looking at Table 1, one might wonder what happens at Δω = 0, and whether this type
of random selection of patterns persists even then. The answer is no. At Δω = 0, we always
observe perfect long term pattern recognition, because in this limit, the transients become
infinitely long, i.e., there is no switching between patterns. Thus, the behavior of the network
at Δω = 0 is qualitatively different from the behavior in the presence of frequency deviations,
which is to be expected if the vector field at Δω = 0 is not structurally stable. A possible,
yet very speculative scenario that could explain the numerical results is as follows:

In the case of nonorthogonal memorized patterns, there exists a set of (up to symmetries)
M special solutions ϕk∗′ that are close to the memorized patterns and haveM zero eigenvalues.
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Figure 4. Schematic plot of a conceivable potential function U of the network dynamics in recognition mode
on a two-dimensional slice of the three-dimensional center manifold of ϕ1∗′ in ϕ-space for a system with M = 3
nonorthogonal memorized patterns. Fixed points with M zero eigenvalues that represent imperfect memorized
patterns are marked with labels. The thick black lines are equipotential curves with minimal potential that
connect ϕ1∗′ to the other memorized patterns.

These solutions are connected by a network of degenerate steady state solutions much like
the perfect patterns in the orthogonal case. However, the degenerate state is not a network
of straight lines now, due to the lesser symmetry of the system. Figure 4 shows a stylized
potential landscape with the curved invariant manifolds. While in the ideal system no single
point in phase space is attractive, an arbitrarily small perturbation can stabilize points close
to the invariant manifold, if the effect “tilts” the potential landscape in the right way. Note
that this stabilizing mechanism does not work in the case of orthogonal patterns, where the
invariant curves connecting the ϕk∗ in phase space are straight lines. As already stated, this
explanation is highly speculative. Whether true or not however—the fact remains that the
correctly recognized patterns are not robust on a very long time scale.

4. Discussion and conclusion. As already mentioned in the introduction, up to now
the robustness of pattern recognition using (1.1) has only been studied with a mean field
approach before, resulting in equations for the overlaps mk. This macroscopic view of the
network establishes that there is a surface of critical values in the three-dimensional (α,Δω, T )
parameter space that separates the regime in which the system is capable of pattern recognition
from the glassy regime. It fails, however, to adequately address the question whether and how
the different condensed patterns are separated from each other within the “memorized” state.
The reason for this failure is the assumption that during pattern recognition, the network
initially approaches a state characterized by m1 = O(1) and mk = O(N−1/2), k = 2, . . . ,M ,
which has been the basis of any mean field analysis so far [1, 2, 3, 4, 5, 15, 16, 17, 18].
The assumption for the mk is not necessarily true just because the assumption for m1 holds,
because, as discussed above, the limit set of the network is actually restricted to a low-
dimensional subspace containing all possible outcome patterns. For example, a state on the
line connecting ϕ∗1 and ϕ∗2 in Figure 1(b) with an overlap of m1 = 0.9 with the correctly
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recognized pattern would still have an overlap of m2 ≈ 0.44 with an incorrect pattern ((m1)2+
(m2)2 = 1), even if N were increased to arbitrarily large values.

To alleviate the shortcomings of the mean field approach, for this article we have investi-
gated the long term robustness of the recognized patterns by looking at the dynamics of the
individual oscillators. The main result is that the network represented by (2.1) does not “pick”
one of the memorized patterns ξi by settling for a state corresponding to the order parameter
mi ≈ 1. The system may settle not only for states representing the patterns themselves, but
also any intermediate state between two patterns. Once such an intermediate state is reached,
the system does not move towards the closer of the two patterns any more. For the case of
mutually orthogonal patterns, we presented a proof that this happens, because the stationary
states representing the patterns in phase space are neutrally stable and part of a single, attrac-
tive limit set. For the general case, we presented some numerical evidence that the situation
is analogous. As a consequence of this structure in phase space, recognized patterns are not
robust. In the presence of arbitrarily small frequency inaccuracies Δω, switching between any
subset of the memorized patterns can occur—there is no critical value for Δω below which
the phenomenon disappears.

The fact that the recognized pattern states are not separate attractors is extremely relevant
for any application, because it means that pattern recognition results obtained with nonideal
networks are only temporary. We would like to emphasize, however, that the lack of robustness
of the recognized patterns is not exclusively a bad thing. First, as the simulations show, for
frequency inaccuracies that are small enough there is a transient period in which the pattern
is correctly recognized. This transient is long compared to the time it takes the network to
perform the initial recognition. Hence, for all practical purposes, there is enough time to read
out and process the recognized patterns. Second, think of the network as a model, however
crude, of a neural processor dealing with a set of different instances of a common concept (like
letters, for example). Each of the patterns ξk then embodies one instance of this concept (i.e.,
A, B, etc.). It seems natural that exchanging one of these instances for another should require
qualitatively less effort than switching to an instance of another concept (e.g., one of a new set
of memorized patterns representing the numbers 1, 2, etc.). The unique dynamics of Hebbian
Kuramoto networks provide exactly this interchangeability of instances, because it takes an
arbitrarily small external modification of the dynamics to transform the representation of one
memorized pattern into the representation of another. For some applications, this could be an
advantage over traditional networks (like the Hopfield model [9]), where memorized patterns
are attractors and therefore switching patterns from the outside is a dissipative process.

As a final remark we would like to raise an interesting question. During our research
on the topic at hand, we were not able to construct a network of symmetrically coupled
Kuramoto oscillators with two or more separate attractive limit sets, regardless of whether
a Hebb rule was used or not. There seems to be no literature proving or disproving the
possibility. Certainty in this matter would establish whether neural networks of coupled
Kuramoto oscillators with robust long term pattern recognition can be constructed at all.
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