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We studied the dynamics of a prototypical electrochemical model, the electro-oxidation of hydrogen
in the presence of poisons, under galvanostatic conditions. The lumped system exhibits relaxation
oscillations, which develop mixed-mode oscillations �MMOs� for low preset currents. A fast-slow
analysis of the homogeneous dynamics reveals that the MMOs arise from a fast oscillating sub-
system and a one-dimensional slow manifold. In the spatially extended system, the galvanostatic
constraint imposes a synchronizing global coupling that drives the system into cluster patterns. The
properties of the cluster patterns �CPs� result from an intricate interplay of the nature of the local
oscillators, the global constraint, and a nonlocal coupling through the electrolyte. In particular, we
find that the global constraint suppresses small-amplitude oscillations of MMOs and prevents do-
mains oscillating out of phase from occupying equal regions in phase space. The nonlocal coupling
causes each individual clustered region to oscillate on a different limit cycle. Typically multistabil-
ity of CPs is found. Coexisting patterns possess different oscillation periods and a different total
fraction in space that occupies the in-phase or out-of-phase state, respectively. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2779856�

Globally coupled oscillators have been studied exten-
sively and have helped us to understand important con-
cepts of synchronization. In spatially extended systems,
global coupling acts always together with (non)local cou-
pling. As a consequence, spatially coherent structures
without an intrinsic wavelength occur. Globally coupled
oscillatory media, e.g., form cluster patterns (CPs) that
are characterized by synchronized domains that exhibit a
constant phase shift among each other. Many properties
of these patterns are still unknown. Among the open
questions are, what determines the relative total size of
different domains, or what is the relation of the period of
a local oscillation in a CP and the period of the homoge-
neous oscillation? Global coupling is present in most elec-
trochemical systems, cluster states being a prominent
pattern observed experimentally. We study theoretically
pattern formation in a prototypical electrochemical
model with global coupling. The underlying homoge-
neous system is four-dimensional and exhibits besides
simple periodic oscillations also mixed-mode oscillations.
CPs arising in the spatially extended model are analyzed
with the focus on extracting rules that govern the differ-
ent properties of the patterns.

I. INTRODUCTION

Electrochemical systems have proven to exhibit a wide
variety of dynamical behaviors1,2 and have served for a long
time as prototypical systems in experimental studies of com-
plex dynamics, such as mixed-mode oscillations �MMOs�,3–9

synchronization phenomena of globally coupled

oscillators,10,11 or the impact of nonlocal coupling on pattern
formation.12–17 In this context, an advantageous property of
electrochemical systems is that both global and �non�local
coupling can be easily varied experimentally in wide ranges.

Global coupling comes about by the external control of
an electrochemical system. When the total current flowing
through the electrochemical cell is kept constant, an opera-
tion mode that is called galvanostatic control, a positive
�synchronizing� global coupling is introduced.18 This can be
seen easily: If the reaction current density changes locally at
some position on the electrode, e.g., due to a local fluctua-
tion, so obviously does the total reaction current density.
Consequently, the galvanostatic control device shifts the po-
tential of the electrode such that the resulting capacitive cur-
rent is equal to the difference between the preset current and
the total reaction current. Thus, a change of the local prop-
erties of the electrode instantaneously affects the dynamics at
all positions. Under so-called potentiostatic conditions, a
constant voltage between the working electrode �WE� and
the reference electrode �RE� is applied. If there is an external
resistor in the outer circuitry, it introduces in the same way as
the galvanostatic control a positive global coupling. The
strength of the coupling can now be tuned through the mag-
nitude of the external resistance. If, on the other hand, the
RE is brought close to the WE, or a negative impedance
device is connected in series to the WE, a desynchronizing
global coupling is introduced.19,20 In this case, the coupling
strength can be varied by changing the distance between the
RE and the WE or the magnitude of the impedance, respec-
tively.

Nonlocal coupling is mediated via the electrostatic po-
tential in the electrolyte.21 The potential drop across the elec-a�Electronic mail: krischer@ph.tum.de.
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trochemical interface is an essential variable for the dynam-
ics of most electrochemical systems. If it changes locally,
this change prompts a redistribution of the electrostatic po-
tential in the entire electrolyte and, therefore, of the electric
field at the electrode. This, in turn, affects the migration cur-
rent density entering the interface. In this way, different po-
sitions of the interface are coupled with each other. The
strength of the coupling depends on the distance of a location
to the reference location, but it is not restricted to the imme-
diate neighborhood of the reference position. Thus migration
coupling is a nonlocal coupling.

An electrochemical model system, with which much in-
sight into the impact of nonlocal and global coupling on
pattern formation could be obtained, is the hydrogen oxida-
tion in the presence of Cu2+ and Cl− ions on a Pt electrode.
Its local dynamics is well understood.22 It involves the ad-
sorption of the two ionic species, which both inhibit oxida-
tion of hydrogen when adsorbed. Owing to their opposite
potential dependence of the adsorption, one of them, Cl−,
takes part in the positive feedback loop, whereas Cu2+ is an
essential species of the inhibitory, negative feedback loop.
Based on these electrochemical steps, a mathematical model
was proposed22 that proved to yield nearly quantitative re-
sults even when complex spatio-temporal patterns were
considered.14,15

While all former theoretical studies with this model were
done for potentiostatic control and desynchronizing global
coupling, in this paper we focus on galvanostatic conditions.
After the introduction of the model equations in the follow-
ing section, we demonstrate in Sec. III that the model pre-
dicts MMOs of the homogeneous system; applying a fast-
slow analysis reveals that the MMOs are of the bursting-
type, i.e., that the MMOs arise due to a fast oscillatory
subsystem that is coupled to a slowly evolving variable. This
allows us to investigate the impact of a positive global cou-
pling in an active medium with bursting oscillations, which
is done in Sec. IV. The dominant patterns we find are CPs in
which the mixed-mode character of the local oscillations is
strongly suppressed. Furthermore, the CPs have some fea-
tures that to our knowledge discriminate them from other
CPs described in the literature. It is proposed that the sup-
pression of the MMOs as well as several of the other unusual
cluster features are the results of the imposed galvanostatic
constraint. Thus, several properties of the CPs described here
should be characteristic for systems with a global constraint,
as opposed to a global feedback that was present in the other
studies of CPs in spatially extended media. Further charac-
teristics can be traced back to the nonlocal coupling. Conclu-
sions and an outlook are given in Sec. V.

II. MODEL

We employed the model introduced by Plenge et al.15,22

to describe the dynamics of the hydrogen oxidation reaction
in the presence of Cu2+ and Cl− ions on a Pt electrode. In
dimensionless form, the model reads

�̇DL =�− ir −
�

�

��

�z
�

z=0
, �1�

�̇Cl = �Cl
−1��1 + ��Cu��1 − �Cu − �Cl�e�DL − pCl�Cle

−�DL� ,

�2�

�̇Cu = �Cu
−1�vCu

a − vCu
d � , �3�

ċCu = 1 − cCu − ��Cu
−1�vCu

a − vCu
d � , �4�

with

vCu
a − vCu

d = cCu�1 − �Cu − �Cl�e−aCu�DL − pCu�Cue
aCu�DL,

ir = c1�1 − �Cu − �Cl��1 − 2�1 + ec2�DL�−1� .

Here, �DL denotes the potential drop across the double layer,
or, in short, the double-layer potential. Equation �1� results
from a local charge balance and states that �DL changes
whenever the reaction current density ir does not match the
local migration current density at the WE im. z is the direc-
tion normal to the WE pointing into the electrolyte and z
=0 is a location at the WE. im depends on two parameters—
the conductivity � and the aspect ratio of the electrochemical
cell �—and is expressed in terms of the electrostatic poten-
tial in the electrolyte, �. Since the electrolyte is an electro-
neutral medium, � can be obtained to a very good approxi-
mation from Laplace’s equation ���=0�. In the calculations,
we considered a quasi-one-dimensional ring WE and solved
Laplace’s equation on a cylindrical surface that was bounded
from the top and the bottom by the WE and the counter
electrode �CE�, respectively.18 In the following, the angular
coordinate is denoted by x, with x� �0,2	�. Potential varia-
tions at the CE �located at z=1� can be neglected and it is
convenient to set ���z=1=0.

The relation between �DL and � results from the consid-
ered control mode. Under galvanostatic conditions, the fol-
lowing constraint is imposed:

�

�
�

x
� ��

�z
�

z=0
dx = i0,

where i0 is the preset current density and the integration is
over the entire electrode.

�Cu and �Cl denote the surface coverages of copper and
chloride on the Pt electrode, and the terms on the right-hand
side of Eqs. �2� and �3� describe the respective adsorption
and desorption kinetics �for details, see Ref. 22�. Treating the
concentration of copper ions in front of the electrode, cCu, as
a variable ensures nearly quantitative agreement between ex-
perimental and simulated homogeneous oscillations. Its tem-
poral evolution is determined by diffusion of Cu2+ ions to
and from the bulk electrolyte, on the one hand, and adsorp-
tion and desorption fluxes at the electrode, on the other hand.
Compared to migration coupling, spatial coupling through
diffusion of any of the three chemical species is negligible
and was not considered in the simulations. For further expla-
nations of the parameters and physical meanings of the terms
in Eqs. �1�–�4�, see Ref. 22. In the present paper, the param-
eters were fixed to the following values: �Cu=21.032 15,
�Cl=83 760.090, pCl=497.864 24, pCu=3.139 13
10−15, �
=50, c1=4.897 46, c2=39.553 36, �=17 401.491 97, aCu
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=12.666 67, and �=1.8. These values are gained from typi-
cal parameter values used in the experiments.

For the chosen cell geometry, the eigenfunctions of the
Laplace operator along the azimuthal direction are Fourier
functions.12 Expanding all variables in a Fourier series, evo-
lution equations for the Fourier coefficients are obtained. The
resulting set of ordinary differential equations was integrated
using lsode.23 Either 64 �Figs. 4 and 5� or 128 �Figs. 6–8�
Fourier modes were used; the number of allocation points in
real space was four times larger than the number of Fourier
modes.

III. MIXED-MODE OSCILLATIONS
IN THE HOMOGENEOUS SYSTEM

First, we consider the dynamics of the spatially homoge-
neous system under galvanostatic control. In this case, Eq.
�1� becomes

�̇DL = − ir + i0. �5�

The corresponding set of ordinary differential equations
�ODEs� �Eqs. �2�–�5�� exhibits oscillations in nearly the en-
tire physically meaningful range of the preset current density
i0, our main bifurcation parameter. At low values of i0, the
oscillations are of the mixed-mode type, while at higher cur-
rent densities, simple periodic oscillations prevail. A current-
voltage characteristic of the stationary steady states is shown
in Fig. 1 together with the ranges of current densities, in
which simple periodic and MMOs, respectively, exist. At low
currents, the stationary state becomes unstable via Hopf bi-
furcation �HB�; the resulting unstable fixed point is de-
stroyed at high current densities in a saddle node �sn� bifur-
cation.

For a deeper understanding of the spatio-temporal pat-
terns discussed below, it is necessary to understand the
mechanism generating the MMOs in the homogeneous
model. This is a difficult task in the full four-variable model.
All qualitative features of the MMOs, however, persisted
when cCu was set to 1. The resulting three-dimensional

model exhibits similar MMOs in almost the same parameter
range as the full model. Time series of MMOs calculated
with the three-dimensional model are shown in Fig. 2�a�, and
projections of the attractor onto different two-dimensional
phase-space planes are depicted in Figs. 2�b� and 2�c�.

Looking at the time series, it is striking that only the one
of �DL exhibits the typical features of MMOs, namely small-
amplitude oscillations �SAOs� that are interrupted by large-
amplitude excursions; �Cu decreases and �Cl increases mono-
tonically when �DL exhibits SAOs. As a result, also none of
the projections of the attractor onto any plane spanned by the
“natural coordinates” �Figs. 2�b� and 2�c�, blue line� exhibits
limit-cycle-type small-amplitude structures. These only ap-
pear after a suitable variable transformation, namely when
replacing �Cl by the total coverage �tot=�Cl+�Cu. A projec-

FIG. 1. �Color online� Current-voltage curves of the stationary homoge-
neous steady states under galvanostatic conditions calculated with model
Eqs. �1�–�4� and existence range of MMOs and simple periodic oscillations
in the homogeneous model. Dashed line: unstable steady state �sn: saddle
node bifurcation; HB: Hopf bifurcation�. Parameters: see Sec. II.

FIG. 2. �Color online� Appearance of MMO in the three-dimensional model
of H2�Cl− ,Cu2+ ,H2SO4�Pt under galvanostatic control for i0=0.5 and cCu

=1.0. Comparison of the time series of �DL, �Cl, and �Cu �a� and different
projections of the trajectory onto different planes in phase space ��b� and
�c��. �c� reveals that �DL and �tot span the fast subsystem.
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tion of the attractor onto the phase plane spanned by
��tot ,�DL� �Fig. 2�c�, red curve�, reveals that the SAOs are
connected with a damped oscillatory motion in the ��tot ,�DL�
plane; however, instead of settling to a stationary value, the
limit cycle trajectory undergoes a large excursion in phase
space, or a large-amplitude oscillation. These features sug-
gest that the MMOs are associated with a saddle focus that
has a two-dimensional oscillatory inset. But the three-
dimensional model does not possess a fixed point in this
region of phase space. Additional model reductions help to
further elucidate the phase space structure.

The time series of �DL �Fig. 2�a�� undergoes fast transi-
tions between a slowly varying low-potential and an oscilla-
tory high-potential branch, while �Cu and �Cl decrease or
increase slowly, depending on which branch �DL is. This
suggests that �DL is a fast variable and the dynamical system
has multiple time scales. Unfortunately, there is no simple
transformation that would allow us to extract a small param-
eter proportional to the ratio of time scales and to subse-
quently do a rigorous analysis of the slow and fast sub-
systems. But obviously, the dynamics of �Cu is much slower
than that of �DL and �tot; thus, the latter two variables form a
fast subsystem.

The one-dimensional slow manifold can be calculated by
treating �Cu as a bifurcation parameter and solving for the
steady states of the remaining two-dimensional system. One
obtains an S-shaped curve with the middle unstable branch
bordered by two saddle node bifurcations �Fig. 3, red, thick
line�. The stable steady states on the high �DL branch are
stable foci. A mixed-mode limit cycle exhibits damped SAOs
in �DL and �tot around this upper branch while �Cu decreases
slowly. Once the sn is reached, the trajectory jumps to the
low �DL branch of the slow manifold on which it remains
while now �Cu slowly increases. In this way, the trajectory
reaches the lower sn, which, in turn, triggers a jump into the
basin of influence of the upper focus and the cycle starts
anew �Fig. 3, blue, thin line�. The MMOs are thus the result
of the interaction of a fast oscillatory subsystem with a one-
dimensional slow S-shaped manifold. These types of MMOs
are often referred to as bursting oscillations; see e.g., Refs.
24 and 25.

IV. CLUSTER PATTERNS IN THE SPATIALLY
EXTENDED SYSTEM

In the spatially extended system �Eqs. �1�–�4��, pattern
formation is observed in large parameter regions. Under gal-

vanostatic control, dominantly CPs are found. CPs are char-
acterized by the presence of a small number of oscillating,
synchronized domains that exhibit among each other a cer-
tain phase shift and possess possibly different oscillation am-
plitudes. A simple classification of CPs distinguishes be-
tween phase clusters and amplitude clusters. In the former,
the oscillation amplitude is equal for all cluster regimes,
while different oscillating regions of the latter have also dif-
ferent amplitudes. CPs are a signature of global coupling. In
our case, the global coupling is imposed by the galvanostatic
control mode.18

A typical example of CPs emerging in the mixed-mode
regime of the homogeneous model is displayed in Fig. 4. The
pattern evolved from a noisy homogeneous initial condition.
It consists of four domains, however they are apparently
pairwise synchronized so that to a first approximation we are
dealing with a two-state CP. As is typical for CPs, there is no
characteristic wavelength. However, in spatially extended
systems both cluster states were reported to tend to occupy
the same total domain size, a phenomenon that has been
termed phase balance.26–28 As a consequence, spatially aver-
aged quantities exhibit simple periodic oscillations with
twice the frequency of the local oscillators. As is obvious
from a visual inspection of the space-time data and the time
series of the average double-layer potential in Fig. 4, phase
balance is not reached in our CPs. Besides, from the time
series it becomes apparent that the system has not yet
reached an asymptotic state. Rather, the state already occu-
pying the larger area slowly grows at the expense of the
other one. We confirmed that this trend continues until the
electrode has reached a uniform state. Thus, at these param-
eter values, as well as at all other ones in which the homo-
geneous system exhibited MMOs, the CPs are not stable so-
lutions. Note, however, that the CPs emerged after applying
small random fluctuations to a uniform state, which indicates
that they can be excited easily. Stable CPs existed at larger
values of i0, at which the homogeneous model has simple
periodic oscillations.

FIG. 3. �Color online� Mixed-mode orbit of the three-dimensional model on
a one-dimensional S-shaped slow manifold �curve labeled slm�. sn denotes
saddle node bifurcation of the slow manifold. Parameters: i0=0.5, cCu=1.0.

FIG. 4. �Color online� Transient CPs in the MMO regime. Parameters: i0

=0.5, �=1.8, and �=0.03; initial condition: state on the uniform limit cycle
with low amplitude noise superimposed.
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Before discussing these stable cluster solutions in more
detail, it is instructive to look at two local oscillations with
antiphase behavior in phase space �Fig. 5, blue lines�. The
trajectories follow closely the stable branches of the slow
manifold, as one might have expected. However, two fea-
tures of the phase portraits are surprising: First, the SAOs on
the upper branch of the local cluster oscillators are much less
pronounced than for the homogeneous oscillation at the same
parameter values. For comparison, the latter one is shown in
red in Fig. 5�a�. This was typical for all CPs in the MMO
region. We will come back to this point below. Second, the
two oscillators do not trace out equal paths in phase space.
Rather, the upper one, which belongs to a point within the
less extended domain, exhibits the transition from the upper
to the lower �DL branch before the trajectory has reached the
sn bifurcation of the slow manifold. In addition, here the
SAOs are even less pronounced than in the lower phase por-
trait, corresponding to a point of the larger domain in Fig. 4.
We thus conclude that the oscillators of the two states are not
identical.

Examples for stable CPs at a higher value of i0, at which
the uniform system exhibits simple periodic oscillations that
do not trace out the slow manifold anymore, are displayed in
Fig. 6. They exhibit several remarkable features. First, the
two patterns were obtained for different initial conditions but
otherwise identical parameters. They obviously differ in the
total fraction of the electrode occupied by each cluster state,
and also possess different periods of local and global oscil-
lations. Thus, there is a multiplicity of patterns.

Second, both patterns are far from being phase-balanced.
In fact, in none of our calculations did we find a phase-

balanced solution, although some initial conditions consisted
of a balanced profile with half of the electrode in a state on
the upper branch of the slow manifold and the other half in a
state on the lower branch of the slow manifold �e.g., the one
that resulted in the lower pattern of Fig. 6�. This observation
underlines that here rules different from those valid for clas-
sical two-phase CPs govern the relative size of each phase.

Third, the local oscillators within any individual spatial
domain are different, not only those belonging to obviously
different cluster states. This can be seen from the phase por-
traits displayed in Fig. 7. The oscillations are taken from the
positions marked by arrows in the upper plate of Fig. 6�a�.
The first two phase portraits belong to two in-phase cluster
domains, the lowest one to an out-of-phase domain. The

FIG. 5. �Color online� Trajectories in phase space of local oscillations
�curves labeled CP� of the CP shown in Fig. 4 �a� at the position x
=0.23 	 and �b� at the position x=1.64 	. The respective curves labeled
slm are the slow manifold of the homogeneous system �for their calculation,
see Sec. III�. The orbit �curve labeled h MMO� in �a� shows for comparison
the stable MMO limit cycle of the homogeneous system.

FIG. 6. �Color online� Multiplicity of stable CPs beyond the MMO regime
of the homogeneous system. Upper plates: Pseudocolor representation of the
spatio-temporal evolution of the double-layer potential; lower plates: time
series of the average double-layer potential. Initial conditions: �a� Uniform
state of the homogeneous system with low amplitude noise superimposed.
The arrows indicate the positions at which local trajectories and time series
in Figs. 7 and 8 are taken; �b� half of the domain was set in one of the two
cluster states of the upper plate, the other half in the other cluster state.
Parameters for both patterns: i0=1.0, �=0.02, and �=1.8.
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phase portraits exhibit different SAO fine structures and the
transition from the upper state to the lower state on the slow
manifold occurs at different locations. In Fig. 7�a�, the SAOs
are hardly discernible and the trajectory jumps from the up-
per to the lower branch of the slow manifold at a consider-
able distance from the sn. In Fig. 7�c�, the SAOs are most
pronounced and the transition to the lower branch occurs at
the fold of the slow manifold. In Fig. 7�b�, we have an inter-
mediate situation. This trend correlates with the size of the
individual domains: The smaller the domain, the more
damped the SAOs and the farther away is the distance be-
tween jump state and sn bifurcation on the upper branch of
the slow manifold. This correlation was found in all our cal-
culations.

Further characteristics of the CPs can be extracted from
local time series of �DL and im �Fig. 8�. Figure 8�a� displays
these quantities for two positions that oscillate out of phase,
Fig. 8�b� for two in-phase oscillations in different domains.
Figure 8�c�, finally, displays time series of different variables
at one position. Several observations can be made: First, an
oscillator is much longer in a low-potential state than in a

high-potential state, in contrast to the typical uniform MMOs
in this parameter range, which display exactly the opposite
behavior �cf. Fig. 2�a��. As a consequence, over a consider-
able fraction of an oscillation period, both oscillators are in a
low-potential state.

FIG. 7. �Color online� Trajectories in phase space of local oscillations
�curves labeled CP� of the CP shown in Fig. 6�a� at the positions marked by
the arrows. �a� x=0.35 	, �b� plate x=0.63 	, and �c� x=1.37 	. The
curves labeled slm are the slow manifold of the homogeneous system �for
their calculation, see Sec. III�.

FIG. 8. �Color online� Upper plate: Local time series of �DL and im �see Eq.
�1� or Eq. �6�� of the CP shown in Fig. 6�a� at locations in antiphase do-
mains: x=1.37 	 �A and D labeled curves�, x=0.64 	 �B and C labeled
curves�. Middle plate: As upper plate but for two time series in in-phase
domains: x=1.37 	 �A and D labeled curves�, x=0.35 	 �B and C labeled
curves�. Lower plate: Local time series of �DL �E labeled curve� and �Cu �G
labeled curve� at x=0.35 	. The inset illustrates the effect a transition of the
antiphase domain has on �DL and �Cu in the down state.
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Second, the local time series of the migration current
density displays not just two but three distinct levels. If we
denote a state on the upper stable branch of the manifold as
an “up-state” and one on the lower branch as a “down-state,”
three states can be distinguished: �a� Cluster one is in the
up-state and cluster 2 in the down-state, �b� both clusters are
in the down-state, and �c� cluster 2 is in the up-state and
cluster 1 in the down-state. The local migration current re-
flects these three states: it is lowest when �DL at the same
position is in an up-state, it takes on an intermediate value
when both domains are in the down-state, and it jumps to a
higher value when the out-of-phase domains jump to the
up-state. Furthermore, when both clusters are in the down-
state, the local current densities in both clusters are approxi-
mately equal and close to the galvanostatically preset current
density, implying that in the down-down-state the entire elec-
trode is nearly uniform. In Ref. 29, two different kinds of
two-phase clusters were reported: The “classical” ones,
termed type-I clusters, in which both states always oscillated
approximately 180° out-of-phase and whose spatio-temporal
structure could be captured by considering a single spatial
“cluster mode,” the system’s dynamics switching between
up-down and down-up configurations; and more unusual
ones, denoted as clusters of type-II, in which the phase dif-
ference between the two clusters oscillated between approxi-
mately +90° and −90° and whose spatio-temporal behavior
could only be reproduced with the superposition of a uniform
and a cluster mode. The above compiled characteristics of
our CPs suggest that they constitute clusters of type-II.

In Fig. 8�b�, local time series of im and �DL are shown
for two positions belonging to different “in-phase” regions.
This representation reaffirms that the oscillators of different
regions, even if they are nearly synchronized, are not identi-
cal. In addition, it can be seen that the transition to the up-
state occurs at different points in time while they concomi-
tantly return to the down state. Furthermore, they exhibit
greatly different levels of im in the up-down states as well as
in the down-up states. In general, we observed that the dif-
ference of im from the preset current density is larger the
smaller the domain is. The magnification shown as an inset
in Fig. 8�c� reveals that �DL in a down domain changes
slightly upon a transition of the other state to an up-state,
while �Cu and �Cl �not shown for clarity� remain essentially
unaffected. Hence, the difference in migration current den-
sity when an antiphase domain is in the up-state is only
caused by a slightly different value of �DL. This helps in our
further discussion of the origin of the unusual CP features.

At this point, it is useful to summarize the properties of
the CPs: �i� There is a multiplicity of patterns with different
fractions of the electrode in the two anticorrelated states and
different oscillation periods. �ii� None of the patterns exhibits
phase balance. �iii� The limit cycles of every individual do-
main are different. �iv� The SAOs of a fast subsystem present
in the lumped system are strongly suppressed in the local
oscillations of a CP in the spatially extended system.

To get further insight in the origin of these properties, let
us assume that to a first approximation, the thickness of the
interfacial regions between “up” and “down” domains can by
neglected. Normalizing space to 1, and denoting the sum of

all domains that are in the up-state by y, �1−y� is the length
of all domains in the down state. If, for simplicity, we as-
sume that the local migration current density of all domains
in one state is equal, the galvanostatic control requires that

im
upy + im

down�1 − y� = i0 = y�i0 − iup� + �1 − y��i0 + idown� ,

where im
up �down� are the migration current densities of the do-

mains in the up- �down-� state and we have introduced the
following definitions:

iup � i0 − im
up;idown � im

down − i0.

Phase balance would be achieved when y=0.5 and thus

�iup� = �idown� ,

i.e., the absolute value of the deviations of the migration
densities from the preset current density had to be the same
for both states. This constitutes a constraint that should hold
only in exceptional cases, if at all. From these simple con-
siderations, we can thus conclude that in general the gal-
vanostatic control conditions prevent the system from taking
on a phase-balanced state. In fact, in systems in which phase
balance was observed, the global coupling was introduced as
a feedback that did not impose a further constraint on the
systems. These considerations make it likely that our result
can be generalized and that phase balance will not be ad-
justed in globally coupled systems with constraints.

A further understanding of the properties of the CPs can
be obtained when rewriting the migration current density in
Eq. �1� in the following way:18,20

−
�

�
� ��

�z
�

z=0
= im = i0 +

�

�
�	�DL
 − �DL� −

�

�
�� ��

�z
− ���

z=0
.

�6�

Here, galvanostatic control is assumed and im has been split
into three contributions: �a� the current density that flows
also in a uniform situation and is thus part of the local or
homogeneous dynamics �cf. Eq. �5��; �b� a contribution that
constitutes a global coupling; it originates form the galvano-
static control, vanishes in a homogeneous situation, and is
synchronizing; and �c� a term that accounts for spatial cou-
pling through the electric field in the electrolyte, so-called
migration coupling. In electrochemical systems, it represents
the dominant spatial coupling and is nonlocal and synchro-
nizing.

With Eq. �6�, we can deduce that the fact that local tra-
jectories in out-of phase domains correspond to different
limit cycles is a consequence of the fact that phase balance is
not fulfilled: The average double-layer potential depends on
whether the smaller or the larger region is in the up- or
down-state. Thus, the contribution of the global coupling
term to the temporal evolution of �DL in one state is different
from the contribution of this term to the other state half a
period later. However, if the effective evolution equations are
different, the resulting limit cycles cannot be expected to be
the same. Note that in addition, the contribution of the mi-
gration coupling to the evolution equations of states in the
two domains with antiphase behavior will be different.
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Focusing again on the global coupling term, we can also
provide a heuristic argument why the SAOs are strongly
damped in our CPs. The SAOs of the up-state cause the
average double-layer potential 	�DL
 to oscillate with the
same frequency. Thus all positions in the down-state experi-
ence a periodic forcing that will cause at least slightly
changed values of im. To still fulfill the galvanostatic condi-
tion, this change has to be compensated by a change of equal
magnitude of the sum of capacitive and faradaic current in
the down domains. This, again, constitutes a constraint that is
unlikely to be met for exactly the same reason as phase bal-
ance will not adjust. This heuristic argument seems to be
likely to hold in general for relaxation oscillators with a fast
oscillatory subsystem and a global constraint, but certainly
calls for a more rigorous treatment.

From Eq. �6� it is apparent that two synchronized do-
mains, though being on different limit cycles, experience the
same contribution of the global coupling term when an an-
tiphase domain undergoes a transition from the down-state to
the up-state, as, e.g., at time 280 in Fig. 8, since their local
values of �DL are essentially the same. The different re-
sponse in im of the two domains is thus necessarily a conse-
quence of the migration coupling. The latter is nonlocal and
therefore affects the entire region of small adjacent domains
while its impact on large domains is less significant. The
different repercussion of migration coupling on the indi-
vidual domains thus also causes the oscillators of synchro-
nized states to adjust to different limit cycles in phase space.
Moreover, the configuration of the individual domains mat-
ters, not only the fraction of the spatial domain that is in one
state. These facts underline that even though the nature of the
pattern is dominated by global coupling, in the case of non-
local coupling, pattern selection is governed by intricate
rules. This is apparently in contrast to globally coupled
reaction-diffusion systems, where it is believed that the only
effect of diffusion is to introduce a minimum domain size;
otherwise, all configurations of domains are equally stable as
long as the total fraction of the domains remains equal.

V. CONCLUSIONS

With a specific electrochemical model, we demonstrated
that the properties of two-state CPs are more intricate than
earlier studies on CPs in spatially extended systems revealed.
These features result from a combination of the properties of
the homogeneous oscillations in the model and the spatial
coupling. The oscillations of the lumped system were
relaxation-like, the system spending most of the time on the
stable branches of an S-shaped slow manifold. One of the
stable branches had an oscillatory inset, which led to MMOs
in part of the parameter space, the dynamics being thus in-
trinsically three-dimensional. A synchronizing global cou-
pling was imposed by a global constraint, and different re-
gions in space were in addition coupled nonlocally with each
other.

The global constraint was shown to prevent the two do-
mains with antiphase behavior from taking up equal total
regions in space. Thus, phase-balanced solutions, as they
were found to be characteristic in systems with a global feed-

back, do not exist. It also causes the oscillations within two
antiphase domains to occur on different limit cycles, and it
suppresses the SAOs around one state of the slow manifold.
The nonlocal coupling, in turn, forces the oscillations in dif-
ferent synchronized regions to occur on different limit
cycles. This also implies that size and number of individual
regions matter, not only the entire size a domain state occu-
pies. In addition, a multiplicity of states is found, different
patterns being characterized by different fractions of space
that are occupied by each of the two domain states and by
different frequencies.

The results prompt a number of questions. The most ob-
vious one is how far the results can be generalized. In other
words, it would be desirable to put the results on a more
general basis using normal form type equations. Another
question concerns the period of a cluster state if the under-
lying homogeneous oscillations are relaxation-like. It is clear
that in this case the lumped oscillator will generically spend
different fractions of the oscillation period on each of the
stable branches of the slow manifold, implying that in a clus-
ter state the local oscillations must somehow adjust their
periods. Further questions concern the conditions a system
has to fulfill such that it can support phase-balanced solu-
tions, or what kind of qualitatively different patterns are pos-
sible in systems with a local dynamics that is intrinsically
three-dimensional. This includes, besides the bursting oscil-
lations considered here, MMOs arising through other mecha-
nisms, such as canards or Shil’nikov homoclinic loops, or
chaotic oscillations. This still incomplete listing shows that
our knowledge on pattern formation in spatially extended
systems with global coupling is still quite fragmentary. It is a
challenge for future work to tackle the above questions and
to fill this gap.
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