Proseminar: Theory of Quantum Matter

Laura Classen, Michael Knap, Johannes Knolle

First Meeting: 
April 18, 10am
PH 1121, Minkowski-Raum

 

List of presentations:

Bachelor Seminar

  • Bose-Einstein Condensation
    THY: Theory of Bose-Einstein condensation in trapped gases, https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.71.463
    EXP: Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, https://www.science.org/doi/10.1126/science.269.5221.198
    EXP: Bose-Einstein Condensation in a Gas of Sodium Atoms https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.75.3969
  • Ising model in two dimensions
    THY: W. Nolting, Statistische Physik, Chapter 4.4
    EXP: Micromagnetometry of two-dimensional ferromagnets, Kim. et al. Nature electronics https://www.nature.com/articles/nature22391
    EXP: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Huang et al. Nature, https://www.nature.com/articles/nature22391 
  • Conventional Superconducitivty
    THY: J. Bardeen, L. N. Cooper, and J. R. Schrieffer https://journals.aps.org/pr/abstract/10.1103/PhysRev.108.1175
    THY: L.N. Cooper, Bound Electron Pairs in a Degenerate Fermi Gas, https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.1189
    EXP: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, https://www.nature.com/articles/nature14964
  • Graphene
    THY: The electronic properties of graphene, chapter 2, journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
    EXP: Two-dimensional gas of massless Dirac fermions in graphene, https://www.nature.com/articles/nature04233
  • Monopoles in spin ice
    THY: Magnetic monopoles in spin ice, C. Castelnovo, R. Moessner, S. L. Sondhi, Nature 451, 42-45 (2008).
    EXP: Spin Ice State in Frustrated Magnetic Pyrochlore Materials, Steven T. Bramwell and Michel J. P. Gingras, Science, 294, 1495-1501 (2001).
  • Harper–Hofstadter model
    THY: Douglas R. Hofstadter Phys. Rev. B 14, 2239 (1976).
    THY: M. Aidelsburger, PhD Thesis, Chapter 2, https://edoc.ub.uni-muenchen.de/18148/1/Aidelsburger_Monika.pdf
    EXP: M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch Phys. Rev. Lett. 111, 18530 (2013).
  • Berezinskii–Kosterlitz–Thouless transition in two dimensions 
    EXP: The Berezinskii-Kosterlitz-Thouless Transition and Anomalous Metallic Phase in a Hybrid Josephson Junction Array, https://arxiv.org/abs/2210.00318
    THY: Book: Statistical Physics of Particles: Mehran Kardar
    THY: Nobel Prize sumary: https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2016.pdf
  • Anderson Localization 
    THY: Anderson, P. W. Absence of diffusion in certain random lattices. Physical Review 109, 1492–1505 (1958).
    THY: B Kramer and A MacKinnon: Review https://iopscience.iop.org/article/10.1088/0034-4885/56/12/001
    EXP: Billy, J. et al. Direct observation of anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).
  • Mott-Insulator transition
    THY: Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.546
    EXP: Greiner et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, https://www.nature.com/articles/415039a
  • Hanburry-Brown-Twiss interferometry  
    THY: E. Altman, et al. Probing many-body states of ultracold atoms via noise correlations,  Phys. Rev. A 70, 013603 (2004)
    EXP: T. Jeltes et al, Comparison of the Hanbury Brown–Twiss effect for bosons and  fermions, Nature 445, 402 (2007)  
  • Josephson Effect
    THY: Josephson, Possible new effects in superconductive tunnelling, https://www.sciencedirect.com/science/article/abs/pii/0031916362913690?via%3Dihub
    EXP: Introduction to Superconductivity, Michael Tinkham, Book.
  • Skyrmions
    THY: Supplemental Material of "Skyrmion Lattice in a Chiral Magnet" www.science.org/doi/abs/10.1126/science.1166767
    EXP: Skyrmion Lattice in a Chiral Magnet https://www.science.org/doi/abs/10.1126/science.1166767

Master Seminar

  • Toric Code and fault-tolerant quantum computation 
    THY: Fault-tolerant quantum computation by anyons, A. Yu. Kitaev, Annals Phys. 303 (2003) 2-30 (2003), https://arxiv.org/abs/1601.03742 (Ch. 1, Ch 2.1, Ch 2.2).
    THY: Review: Quantum Spin Liquids: Chapter 2 of https://arxiv.org/pdf/1601.03742.pdf
    THY: Review: Topological phases and quantum computation, https://arxiv.org/abs/0904.2771 
    EXP: Realizing topologically ordered states on a quantum processor, Science 374, 1237-1241 (2021), https://arxiv.org/abs/2104.01180
  • Topological band structures
    THY: Haldane, F. D. M. Model for a quantum Hall Effect without Landau levels: condensed-matter realization of the ‘parity’ anomaly. Phys. Rev. Lett. 61, 2015 (1988)
    EXP: Experimental realization of the topological Haldane model with ultracold fermions Gregor Jotzu, Michael Messer, Rémi Desbuquois, Martin Lebrat, Thomas Uehlinger, Daniel Greif & Tilman Esslinger Nature 515,  237 (2014).
  • Quantum Spin Hall Effect
    THY: Quantum Spin Hall Effect in Graphene, Kane, Mele, https://arxiv.org/abs/cond-mat/0411737
    THY: Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Bernevig, Hughes, Zhang, https://arxiv.org/abs/cond-mat/0611399
    EXP: Quantum Spin Hall Insulator State in HgTe Quantum Wells, Koenig et al, https://arxiv.org/abs/0710.0582
  • Integer Quantum Hall Effect
    THY: Lecture Notes David Tong, Ch 2, www.damtp.cam.ac.uk/user/tong/qhe.html
    EXP: New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.45.494
  • Fractional Quantum Hall Effect
    THY: Lecture Notes David Tong, Ch 3, https://www.damtp.cam.ac.uk/user/tong/qhe.html
    EXP: Two-Dimensional Magnetotransport in the Extreme Quantum Limit, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.48.1559
  • Twisted Bilayer Graphene
    THY: Moire bands in twisted double-layer graphene, Rafi Bistritzer and Allan H. MacDonald, https://doi.org/10.1073/pnas.1108174108
    EXP: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Cao et al.  https://doi.org/10.1038/nature26154
    EXP: Unconventional superconductivity in magic-angle graphene superlattices, Cao et al. https://www.nature.com/articles/nature26160
    EXP: Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, https://www.nature.com/articles/s41586-019-1695-0
  • Wigner Crystals
    THY: E. Wigner: On the Interaction of Electrons in Metals, https://doi.org/10.1103%2FPhysRev.46.1002
    EXP: Signatures of Wigner crystal of electrons in a monolayer semiconductor https://www.nature.com/articles/s41586-021-03590-4
  • Anderson's Orthogonality Catastrophe 
    THY: P. W. Anderson, Infrared Catastrophe in Fermi Gases with Local Scattering Potentials, Phys. Rev. Lett. 18, 1049 (1967). 
    THY: Gogolin et al. Bosonization Strong Correlated Systems, Book, Chapter 26.
    EXP: M. Cetina, et al, Ultrafast many-body interferometry of impurities coupled to a Fermi sea., Science 354, 96 (2016).
  • Eigenstate thermalization 
    THY: Thermalization and its mechanism for generic isolated quantum systems, Marcos Rigol, Vanja Dunjko, Maxim Olshanii Nature 452 854 (2009). 
    EXP: A quantum Newton's cradle, Toshiya Kinoshita, Trevor Wenger and David S. Weiss Nature 440, 900 (2006).
  • Many-body localization 
    THY: Abanin et al, Review journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.021001
    EXP: Michael Schreiber, et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice, Science 349, 842 (2015), arXiv:1501.05661.
  • Periodically driven many-body systems
    THY: Photovoltaic Hall effect in graphene, T Oka, H Aoki Physical Review B 79, 081406 (2009). 
    EXP: Observation of Floquet-Bloch states on the surface of a topological insulator, YH Wang, H Steinberg, P Jarillo-Herrero, N Gedik Science 342, 453 (2013).
  • Time crystals 
    THY: Floquet Time Crystals, Dominic V. Else, Bela Bauer, and Chetan Nayak, Phys. Rev. Lett. 117, 090402 (2016). 
    THY: On the phase structure of driven quantum systems, Khemani et al. https://arxiv.org/abs/1508.03344
    EXP: Observation of discrete time-crystalline order in a disordered dipolar many-body system, Soonwon Choi, et al. Nature 543, 221 (2017).
  • Dynamical Quantum Phase transitions 
    THY: Dynamical Quantum Phase Transitions in the Transverse Field Ising Model, Markus Heyl, Anatoli Polkovnikov, Stefan Kehrein Phys. Rev. Lett. 110, 135704 (2013), Dynamical quantum phase transitions: A brief survey, Markus Heyl, https://arxiv.org/abs/1811.02575 
    EXP: Direct observation of dynamical quantum phase transitions in an interacting many-body system, P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C. Hempel, B. P. Lanyon, M. Heyl, R. Blatt, C. F. Roos, Phys. Rev. Lett. 119, 080501 (2017), arXiv:1612.06902.

TUM Course Website PH1439